线性代数 第五章 特征值与特征向量

一、特征值定义
A\alpha =\lambda \alpha ,a\neq 0
二、特征值求法
  • 定义法;
  • \left | \lambda E-A \right |=0
  • 相似。
三、特征向量求法
  • 定义法;
  • 基础解系法;
  • (\lambda E-A)x=0
  • 相似。
四、特征值性质
  1. 不同特征值的特征向量线性无关
  2. k重特征值至多有k个线性无关的特征向量
  3. \left | A \right |=\prod \lambda _i,\sum a_{ii}=\sum \lambda _i
五、相似的定义

P^{-1}AP=B,则A和B相似。

六、相似的性质(必要条件)
  • r(A)=r(B)
  • \left | A \right |=\left | B \right |
  • \left | \lambda E-A \right |=\left | \lambda E-B \right |
  • \sum a_{ii}=\sum b_{ii}
七、可对角化
7.1 充要条件
  • A有n个线性无关的特征向量
  • 如果λ是k重特征值,那么λ必有k个线性无关的特征向量
  • r(\lambda _i E-A)=n-n_i,\lambda _in_i重特征值
7.2 充分条件
  • A有n个不同的特征值
  • A是实对称矩阵
八、实对称矩阵隐含的信息
  • 必与对角矩阵相似
  • 可用正交矩阵对角化,且对角阵上的元素即为特征值
  • 不同特征值的特征向量必正交
  • 特征值必是实数,特征向量必是实向量
  • k重特征值必有k个线性无关的特征向量(r(\lambda E-A)=n-k
  • n阶实对称矩阵A有n个特征值的话(含重根),若r(A)<n,则有n-r(A)个零特征值
  • 秩等于非零特征值的个数

P_1^{-1}AP_1=B,P_2^{-1}BP_2=C\Rightarrow P^{-1}AP=C,P=P_1P_2

AkA+EA+kEA^{-1}A^*A^nP^{-1}AP
\lambdak\lambda +1\lambda +k\frac{1}{\lambda }\frac{\left | A \right |}{\lambda }\lambda ^n\lambda
\alpha\alpha\alpha\alpha\alpha\alphaP^{-1}\alpha

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迎风斯黄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值