2024年高教社杯全国大学生数学建模竞赛E题思路(2024数学建模国赛E题思路)

E题 交通流量管控

随着城市化进程的加快、机动车的快速普及,以及人们活动范围的不断扩大,城市道路交通拥堵问题日渐严重,即使在一些非中心城市,道路交通拥堵问题也成为影响地方经济发展和百姓幸福感的一个“痛点”,是相关部门的棘手难题之一。
考虑一个拥有知名景区的小镇。景区周边道路上既有本地居民出行,也有过境车辆,还有大量前来景区游览的游客车辆,后者常常会因寻找停车位而在周边道路上来回低速绕圈,影响了道路的通行效率。
图1是小镇中两条主路的情况:纬中路,从环西路到环东路,约3.5公里;经中路,从环北路到环南路,约1.8公里。两条路上共有12个交叉口,监控设备可以记录每个交叉口四个方向的车流数据。以经中路-纬中路交叉口为例,有经中路北往南(north-south)、经中路南往北(south-north)、纬中路东往西(east-west)、纬中路西往东(west-east)四个相位通过的每辆车的信息,包括拍摄地点、行驶方向、拍摄时间和车牌号。
附件2记录了2024年4月1日到5月6日这两条主路上有监控设备的地方出现过的所有车辆信息。监控设备安装在停车线后方,因此并不知道车辆通过停车线后是左转、直行还是右转。
由于沿途有住宅小区、酒店和写字楼等建筑物,车辆可以驶入这些建筑物的停车场或者从停车场驶

目前尚未有针对2024高教全国大学生数学建模竞赛A的具体答案解析公开发布。然而,可以基于以往的比经验和解方法提供一些指导性的建议。 ### 关于数学建模竞赛的一般解答流程 #### 数据预处理阶段 数据清洗和特征提取是解决任何实际问的第一步。对于数学建模中的复杂数据集,通常需要利用Python或MATLAB等工具完成初步的数据整理工作[^1]。例如,在数据分析过程中可能涉及缺失值填补、异常值检测以及标准化操作: ```python import pandas as pd from sklearn.preprocessing import StandardScaler def preprocess_data(data_path): data = pd.read_csv(data_path) # 处理缺失值 data.fillna(method='ffill', inplace=True) # 去除异常值 (假设使用IQR法) Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 filtered_data = data[~((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR))).any(axis=1)] scaler = StandardScaler() scaled_data = scaler.fit_transform(filtered_data) return scaled_data ``` #### 模型构建与求解 根据具体问背景选择合适的算法模型至关重要。如果问是关于分类或者回归预测,则可考虑采用机器学习框架如Scikit-Learn实现支持向量机(SVM)、随机森林(Random Forests)等经典算法;如果是优化类问则需引入线性规划(LP)/整数规划(IP)[^2]等相关理论和技术手段来设计目标函数并约束条件加以求解。 #### 结果验证与可视化表达 最后一步是对所得结论进行有效性检验并通过图表等形式直观呈现出来以便评审专家更好地理解整个解决方案逻辑链条。Matplotlib 和 Seaborn 是两个非常流行的用于绘制高质量统计图形库之一[^3]: ```python import matplotlib.pyplot as plt import seaborn as sns def plot_results(x_values, y_actual, y_predicted): plt.figure(figsize=(8,6)) sns.lineplot(x=x_values, y=y_actual, label="Actual Values", color="blue") sns.lineplot(x=x_values, y=y_predicted, label="Predicted Values", color="red") plt.title('Comparison of Actual vs Predicted Results') plt.xlabel('X-axis Label') plt.ylabel('Y-axis Label') plt.legend() plt.show() ``` 尽管上述内容涵盖了大部分常规比环节所需技能要点,但由于缺乏当前度特定主描述无法给出更精确指向性意见。因此强烈推荐参者密切关注官方最新动态通知获取最权威版本资料参考依据!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迎风斯黄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值