魏格纳塞茨原胞就是第一布里渊区
一,晶格的Fourier变换
一个物理问题既可以在正(坐标)空间描写,也可以在倒(动量)空间描写
坐标表象,动量表象
为什么选择不同的表象?为什么是动量空间?
1.适当的选取一个表象,可以使得问题简化,容易处理
2.如果电子在均匀空间运动,虽然坐标一直变化,但是是守恒的,这是在坐标
表象当然不如在动量表象简单
3.衍射实验的理论基础,在量纲上,坐标空间和动量空间互为倒数,因此也把坐标和
动量空间分别称为正,倒空间,其他也沿用这种称谓
坐标空间中用格矢来描绘周期性
只是一个数字变换
如果晶体具有平移周期性,那么就有周期性的函数
关于傅里叶变换的理解?
二,倒格子(reciprocal lattice)
定义:对于Bravais格子种所有的格矢,有一系列动量空间矢量
,满足
的全部格点
的集合,构成该Bravais格子的倒格子,这些点称为倒格点,
称为倒格矢
因此Bravais格子也称为正格子
等价关系:知道,我们就可以算出
基矢的选取在布拉伐格子是任意的
倒格子基矢:
对正格子,假定
代入
如果选择一组b,使得
那么矢量K就可由b组成
可以是整数
我们只是来确定倒空间的基矢,假定实空间的基矢选定,倒空间必然也是确定的
这就定义了倒格子基矢,它可以满足正,倒格矢之间的的关系
这样形式上与正格矢一样,也具有平移对称性,
可用基矢与整数表示的平移周期性
定义了倒空间的Bravais格子,
就是倒格子基矢
表示了什么?
这是一个正交关系,即与
正交!
如果用矢量画出来的话,看和
确定的平面,即
矢量垂直于该平面
与
正交
即矢量与
平行! 因此,可以设
确定可以利用正交关系,就有
就是
除以原胞的体积
这样的话我们就可以推出下列公式
有些教科书也将这个关系作为倒格子基矢的定义,即由这三个矢量可以定义倒格矢,倒格矢给出的端点集合构成倒格子
倒格子的倒格子就是正格子,所以完全是对应关系
端点的集合构成倒空间中的Bravais格子
1.倒格矢
2.满足平移对称性
h1,h2,h3都是整数,
倒格子原胞的体积:
如果是二维的倒格子,是需要把三维的一个维度看作时单位矢量
正格子与到各自之间的关系:
不同空间描写晶体的对称性:
空间(实空间)《=》
空间
Bravais 格子 《=》 倒格子
W-S原胞 《=》第一Brillouin区
与晶面
正交
注意这不是米勒指数(hkl) ,晶面指数,即该晶面族最靠近原点晶面的截距分别为
待续