K空间的理解 倒空间

魏格纳塞茨原胞就是第一布里渊区

一,晶格的Fourier变换

        一个物理问题既可以在正(坐标)空间描写,也可以在倒(动量)空间描写

        坐标表象r,动量表象k

        为什么选择不同的表象?为什么是动量空间?

                1.适当的选取一个表象,可以使得问题简化,容易处理

                2.如果电子在均匀空间运动,虽然坐标一直变化,但是k是守恒的,这是在坐标

                表象当然不如在动量表象简单

                3.衍射实验的理论基础,在量纲上,坐标空间和动量空间互为倒数,因此也把坐标和

                动量空间分别称为正,倒空间,其他也沿用这种称谓

坐标空间中用格矢来描绘周期性

只是一个数字变换

如果晶体具有平移周期性,那么就有周期性的函数

关于傅里叶变换的理解?

二,倒格子(reciprocal lattice)

定义:对于Bravais格子种所有的格矢R_l,有一系列动量空间矢量R_h,满足e^{iK_h\cdot R_l}=1

K_h \cdot R_l=2\pi m, m \in Z的全部格点K_h的集合,构成该Bravais格子的倒格子,这些点称为倒格点,K_h称为倒格矢

因此Bravais格子也称为正格子

等价关系:知道K_h,我们就可以算出R_l

基矢的选取在布拉伐格子是任意的

倒格子基矢:

对正格子,假定R_l=l_1a_1+l_2a_2+l_3a_3

代入 K_h \cdot R_l=l_1 K_h \cdot a_1+l_2 K_h \cdot a_2+l_3 K_h \cdot a_3=2 \pi m

如果选择一组b,使得b_i \cdot a_j=2 \pi \delta _{ij}

那么矢量K就可由b组成 K_h=h_1b_1+h_2b_2+h_3b_3

h_1,h_2,h_3可以是整数

我们只是来确定倒空间的基矢,假定实空间的基矢选定,倒空间必然也是确定的

这就定义了倒格子基矢,它可以满足正,倒格矢之间的K \cdot R= 2\pi m的关系

这样形式上与正格矢一样,K_h也具有平移对称性,

        \rightarrow可用基矢与整数表示的平移周期性

                \rightarrow K_h定义了倒空间的Bravais格子,b_i就是倒格子基矢

b_i \cdot a_j=2 \pi \delta _{ij}表示了什么?

这是一个正交关系,即b_1a_2,a_3正交!

如果用矢量画出来的话,看a_2a_3确定的平面,即a_2 \times a_3矢量垂直于该平面

                                ​​​​​​​        ​b_1a_2,a_3正交

即矢量b_1a_2 \times a_3平行! 因此,可以设

        b_1=\eta (a_2 \times a_3)

确定\eta可以利用正交关系,就有

        a_1 \cdot b_1=\eta a_1 \cdot(a_2 \times a_3)= 2\pi

 \eta = \frac {2 \pi}{a_1 \cdot (a_2 \times a_3)}=\frac{2 \pi}{\Omega}, b_l=\frac{2 \pi}{\Omega}(a_2 \times a_3), \Omega =| a_1 \cdot (a_2 \times a_3)|

\eta就是2 \pi除以原胞的体积

这样的话我们就可以推出下列公式

b_1=2 \pi \frac{a_2 \times a_3}{a_1 \cdot (a_2 \times a_3)}, b_2=2 \pi \frac{a_3 \times a_1}{a_1 \cdot (a_2 \times a_3)}, b_3=2 \pi \frac{a_1 \times a_2}{a_1 \cdot (a_2 \times a_3)},

有些教科书也将这个关系作为倒格子基矢的定义,即由这三个矢量可以定义倒格矢,倒格矢给出的端点集合构成倒格子

倒格子的倒格子就是正格子,所以完全是对应关系

K_h端点的集合构成倒空间中的Bravais格子

1.倒格矢K_h =h_1b_1+h_2b_2+h_3b_3

2.满足平移对称性K_h =K_{h`}+K_{h``}

h1,h2,h3都是整数,

倒格子原胞的体积:\Omega^*=| b_1 \cdot (b_2 \times b_3)| = \frac{(2\pi)^3}{\Omega}

如果是二维的倒格子,是需要把三维的一个维度看作时单位矢量a_3=\hat k

b_1=2 \pi \frac{a_2 \times \hat k}{\hat k \cdot (a_1 \times a_2)}, b_1=2 \pi \frac{ \hat k \times a_1}{\hat k \cdot (a_1 \times a_2)},

正格子与到各自之间的关系:

不同空间描写晶体的对称性:

        r空间(实空间)《=》k空间

        Bravais 格子       《=》 倒格子

        W-S原胞             《=》第一Brillouin区

K_h =h_1b_1 + h_2b_2 +h_3 b_3与晶面(h_1h_2h_3)正交

注意这不是米勒指数(hkl) ,晶面指数(h_1h_2h_3),即该晶面族最靠近原点晶面的截距分别为\frac{a_1}{h_1},\frac{a_2}{h_2},\frac{a_3}{h_3}

待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值