GNN与Transformer的融合!实现全局与局部的完美协同

2024深度学习发论文&模型涨点之——GNN+Transformer

关于GNN(图神经网络)和Transformer的结合,这是一个近年来的研究热点,它们结合的主要优势在于能够发挥各自的长处,提高处理图数据的效率和性能。具体来说,Transformer可以帮助GNN扩展其感受野,包括那些距离中心节点较远的相关节点,而GNN则可以帮助Transformer捕捉复杂的图拓扑信息,并从相邻区域高效地聚合相关节点。

GNN和Transformer的结合在未来有望通过提升模型性能和效率,推动模型创新,并在推荐系统、文本分析、生物信息学等多个领域得到广泛应用。

如果有同学想发表相关论文,小编整理了一些GNN+Transformer【论文】合集,以下放出部分,全部论文PDF版,需要的同学公人人人号【AI智界先锋】回复“GNN+Transformer”即可全部领取

论文精选

论文1:

AN IMPROVED GNN-REASONER FOR GAME DESCRIPTION LANGUAGE

改进的用于游戏描述语言的GNN推理器

方法

  • 提出GNN-Reasoner V2模型:通过改进图结构、扁平化否定规则的方法、改进的神经网络架构、加快和模块化的数据集生成过程以及一套分析工具来提升模型性能。

  • 数据集生成:引入

<think>好的,我现在需要回答用户关于“智能决策支持”的具体例子,包括输入的数据类型、数据如何交叉融合、后台运营方式以及能获得哪些信息。首先,用户之前询问了国企接入DeepSeek的现状,现在希望更深入的实例说明。我需要确保回答具体且有结构,可能涉及供应链优化或市场分析等场景。 首先,用户需要具体例子,比如供应链优化或市场预测。例如,制造业企业使用大模型优化供应链,这可能是一个合适的例子。接下来,输入的数据类型应包括市场数据(价格、需求)、供应链数据(库存、物流)、外部数据(天气、政策)以及企业内部数据(生产计划、销售数据)。需要详细列出这些数据,并说明它们的来源和类型。 然后,数据交叉融合部分需要解释如何整合这些多源数据。可能需要数据清洗、特征工程,以及使用知识图谱或图数据库来建立实体之间的关系。例如,将天气数据物流延迟相关联,或者将市场趋势库存水平结合分析。需要说明技术手段,比如数据湖或ETL流程,以及如何处理结构化和非结构化数据。 后台运营方面,涉及大模型的训练和部署,可能包括持续的数据流处理、模型迭代优化,以及实时数据历史数据的结合。需要提到数据处理流程、模型训练(如使用Transformer架构)、实时API接口,以及监控和反馈机制。这部分要说明技术架构,如云计算平台的使用,以及如何确保模型的实时性和准确性。 最后,能获得的信息包括需求预测、风险预警、成本优化建议、供应链可视化等。需要具体说明每个信息如何辅助决策,比如提前调整生产计划或优化运输路线。同时,要强调这些信息带来的效益,如效率提升、成本降低。 需要确保例子真实可信,可能参考行业通用做法,但避免虚构具体企业名称。同时,语言要清晰,结构分明,分点回答。可能还需要考虑用户的技术背景,适当解释术语,但保持专业性。检查是否覆盖了用户问题的所有方面:输入数据、交叉融合、后台运营、输出信息。确保逻辑连贯,没有遗漏关键点。</think>以下通过一个制造业企业利用大模型实现**供应链智能决策**的虚构案例,说明具体实现过程和数据应用细节: --- ### **案例背景** 某大型家电制造企业面临以下挑战: - 市场需求波动大,库存积压缺货并存 - 全球供应链(芯片、物流)受政治、天气等因素影响频繁中断 - 传统人工预测准确率仅60%,导致生产计划滞后 引入大模型后,构建了**供应链智能决策系统**,核心流程如下: --- ### **1. 输入数据类型** 系统聚合多维度数据,分为四类: | **数据类型** | **具体内容** | **数据来源** | |--|----------------------------------| | **市场销售数据** | - 历史销量、渠道库存、促销活动效果<br>- 电商平台消费者评价(非结构化文本)<br>- 竞品价格波动趋势 | ERP系统、电商平台API、爬虫 | | **供应链数据** | - 原材料库存、供应商交货周期<br>- 物流运输实时状态(GPS、温度传感器)<br>- 工厂产能、生产线故障记录 | IoT设备、供应商协同平台、MES系统 | | **外部环境数据** | - 天气预测(台风、暴雨路径)<br>- 国际政治事件(海关政策变化、港口罢工)<br>- 大宗商品(如铜、塑料)价格波动 | 政府公开数据、新闻舆情监测 | | **企业内部数据** | - 财务成本结构(仓储、运输、人力)<br>- 产品BOM表(物料清单)<br>- 战略目标(如市占率、利润率要求) | 财务系统、PLM系统、管理层会议纪要 | --- ### **2. 数据交叉融合方法** **a. 多模态数据处理** - 结构化数据(库存、销量)→ 时序数据库存储,按分钟级更新 - 非结构化数据(客户评价、新闻)→ NLP提取关键词(如“制冷慢”“物流延误”)并量化 - 传感器数据(物流温湿度)→ 边缘计算筛选异常值后上传 **b. 知识图谱构建** 建立实体关系网络,例如: ``` [台风“山竹”] --影响--> [深圳港口关闭] --导致--> [供应商A芯片延迟2周] --关联--> [产品P生产线停工] --影响--> [华东区域缺货率上升15%] ``` 通过图神经网络(GNN)动态更新关联权重。 **c. 动态特征工程** - 用强化学习自动筛选关键指标(如发现“美国加息”对南美物流成本影响权重高于预期) --- ### **3. 后台运营流程** **a. 数据处理层** - 数据湖:Delta Lake统一存储原始数据,Databricks进行清洗和标注 **b. 模型训练层** - 基座模型:DeepSeek供应链垂直大模型(预训练于行业报告、供应链仿真数据) - 微调方式: - 用企业历史数据训练LSTM预测需求 - 基于强化学习模拟供应链中断场景(如“芯片断供时,应优先保障高端产品线还是走量产品线?”) **c. 决策输出层** - 每日生成《供应链韧性指数报告》(0-100分,综合风险、成本、时效) - 突发事件实时预警(如“预测未来14天华南暴雨,建议今日增加武汉仓库存20%”) - 多目标优化方案(例:在“总成本增加≤5%”约束下,提供3套备选采购计划) --- ### **4. 可获得的决策信息** | **输出类型** | **具体内容示例** | **决策价值** | |--|---------------------------------------------------------------------------------|----------------------------------------------| | **需求预测** | - 下季度空调销量预测误差率从20%降至8%<br>- 识别新兴市场(如东南亚)增长潜力(置信度92%) | 指导生产计划、海外仓布局 | | **风险预警** | - 预测日本地震对关键电容器供应的冲击概率(7天内概率67%)<br>- 识别某物流商财务风险(建议切换备用供应商) | 提前2-4周启动应急预案,降低断链损失 | | **成本优化** | - 推荐调整海运/空运比例,使运输成本下降12%且交付延迟≤3天<br>- 动态采购策略(大宗材料低价时自动触发囤货) | 年供应链成本减少约2.3亿元 | | **供应链可视化** | - 全局仪表盘显示“芯片库存-在途-需求”缺口趋势<br>- 模拟不同战略目标下的资源分配方案(如“保利润”vs“抢市场”) | 支持管理层快速达成共识,决策效率提升40% | --- ### **技术关键点** 1. **数据闭环**:将实际决策结果反馈至模型(如“未采纳的预警是否真实发生”),持续优化预测准确性 2. **人机协同**:系统提供“为什么这样建议”的可解释性分析(如高亮影响决策的关键变量) 3. **安全机制**:通过联邦学习,在保护供应商数据隐私的前提下联合建模 此类系统已在部分先进制造企业初步落地,据第三方评估,平均可降低库存成本15%-25%,缩短市场响应周期30%以上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值