2024深度学习发论文&模型涨点之——GNN+Transformer
关于GNN(图神经网络)和Transformer的结合,这是一个近年来的研究热点,它们结合的主要优势在于能够发挥各自的长处,提高处理图数据的效率和性能。具体来说,Transformer可以帮助GNN扩展其感受野,包括那些距离中心节点较远的相关节点,而GNN则可以帮助Transformer捕捉复杂的图拓扑信息,并从相邻区域高效地聚合相关节点。
GNN和Transformer的结合在未来有望通过提升模型性能和效率,推动模型创新,并在推荐系统、文本分析、生物信息学等多个领域得到广泛应用。
如果有同学想发表相关论文,小编整理了一些GNN+Transformer【论文】合集,以下放出部分,全部论文PDF版,需要的同学公人人人号【AI智界先锋】回复“GNN+Transformer”即可全部领取
论文精选
论文1:
AN IMPROVED GNN-REASONER FOR GAME DESCRIPTION LANGUAGE
改进的用于游戏描述语言的GNN推理器
方法
-
提出GNN-Reasoner V2模型:通过改进图结构、扁平化否定规则的方法、改进的神经网络架构、加快和模块化的数据集生成过程以及一套分析工具来提升模型性能。
-
数据集生成:引入