GNN与Transformer的融合!实现全局与局部的完美协同

2024深度学习发论文&模型涨点之——GNN+Transformer

关于GNN(图神经网络)和Transformer的结合,这是一个近年来的研究热点,它们结合的主要优势在于能够发挥各自的长处,提高处理图数据的效率和性能。具体来说,Transformer可以帮助GNN扩展其感受野,包括那些距离中心节点较远的相关节点,而GNN则可以帮助Transformer捕捉复杂的图拓扑信息,并从相邻区域高效地聚合相关节点。

GNN和Transformer的结合在未来有望通过提升模型性能和效率,推动模型创新,并在推荐系统、文本分析、生物信息学等多个领域得到广泛应用。

如果有同学想发表相关论文,小编整理了一些GNN+Transformer【论文】合集,以下放出部分,全部论文PDF版,需要的同学公人人人号【AI智界先锋】回复“GNN+Transformer”即可全部领取

论文精选

论文1:

AN IMPROVED GNN-REASONER FOR GAME DESCRIPTION LANGUAGE

改进的用于游戏描述语言的GNN推理器

方法

  • 提出GNN-Reasoner V2模型:通过改进图结构、扁平化否定规则的方法、改进的神经网络架构、加快和模块化的数据集生成过程以及一套分析工具来提升模型性能。

  • 数据集生成:引入了新的数据结构和多核处理技术,加快了数据集生成速度。

  • 神经网络架构:采用新的GAT块结构,减少了硬件资源需求,同时保持性能。

  • 分析工具:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值