时间序列异方差ARCH和GARCH模型

本文探讨了1926年至1991年标准普尔500股票价值加权月度收益序列的时间序列异方差性。通过对序列图形的观察和ARCH模型的LM及PQ检验,确定了序列的异方差性,并选择了ARCH(3)和GARCH(1,1)模型进行拟合。最终,展示了模型的95%置信区间与实际数据对比。" 103249245,7720043,细碎知识:从四元数到自动微分,"['四元数', 'Python', 'Julia', '统计学', '自动微分']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 实验数据来源于1926年-1991年标准普尔500股票价值加权月度收益序列:

图形检验:

首先对1926年-1991年标准普尔500股票价值加权月度收益序列的进行集群效应:集群效应为在波动大的地方波动都比较大,在波动小的地方波动都比较小,具有一定的聚集性。

 从序列的时序图大致可以看出序列的异方差性,接着画出x^2的时序图如下:

x^2的时序图跟能明显地看出序列具有异方差性。

ARCH模型检验:

LM检验:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值