Jetson nano安装支持CUDA的OpenCV并验证

1、安装OpenCV

我参考的下方这个链接安装的OpenCV4.5.3

【精选】【CUDA加速DNN】【CSI摄像头】Jetson nano使用记录之源代码编译安装opencv4.5.1_jetson nano编译opencv4_絮沫的博客-CSDN博客

安装之后jtop显示支持CUDA。

2、写代码验证

写了一个人脸检测的程序,验证GPU使用情况。

代码如下:

#include <iostream>
#include <string>
#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/objdetect.hpp>
#include <opencv2/imgproc/types_c.h>
#include <opencv2/videoio.hpp>
#include <opencv2/cudaobjdetect.hpp>
#include <opencv2/cudaimgproc.hpp>

using namespace std;
using namespace cv;


int main( int argc, char** argv )
{
    // Initialize OpenCV with CUDA support
    cv::cuda::setDevice(0); // Use the first CUDA device
    cv::cuda::printCudaDeviceInfo(0);


    VideoCapture cap(1);
    //创建显示窗口
    namedWindow("faceWithCUDA", WINDOW_AUTOSIZE);

    cv::Mat img;

    cv::cuda::GpuMat gpuImg, gpuImgGray;

    cv::cuda::GpuMat objbuf;


    cv::Ptr<cv::cuda::CascadeClassifier> faceCascade = cv::cuda::CascadeClassifier::create("/home/tuotuo/opencv-4.5.3/data/haarcascades_cuda/haarcascade_frontalface_alt.xml");


    //逐帧显示
    while(true)
    {

        cap >> img;

        gpuImg.upload(img);

        cv::cuda::cvtColor(gpuImg, gpuImgGray, cv::COLOR_BGR2GRAY);

        faceCascade->detectMultiScale(gpuImgGray, objbuf);


        std::vector<cv::Rect> faces;
        faceCascade->convert(objbuf, faces);

        for (int i = 0; i < faces.size(); i++)
        {
            cv::rectangle(img, faces[i], cv::Scalar(255, 0, 0), 2);
        }


        imshow("faceWithCUDA",img);

        int keycode = cv::waitKey(30) & 0xff ; //ESC键退出
            if (keycode == 27) break ;
    }

    cap.release();
    destroyAllWindows() ;
}

运行,jtop查看GPU使用情况,GPU拉满。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值