Jetson Orin NX 开发指南(5): 安装 OpenCV 4.6.0 并配置 CUDA 以支持 GPU 加速

一、前言

Jetson 系列的开发板 CPU 性能不是很强,往往需要采用 GPU 加速的方式处理图像数据,因此本文主要介绍如何安装带有 GPU 加速的 OpenCV,其中 GPU 加速通过 CUDA 来实现。

参考博客

Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0-CSDN博客Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679Ubuntu 20.04 配置 VINS-Fusion-gpu + OpenCV 4.6.0https://blog.csdn.net/qq_44998513/article/details/131462679

二、安装 OpenCV 4.6.0

下载 opencv 源码,选择所需要的版本 opencv 4.6.0,相应的扩展 opencv_contrib 4.6.0,以及用于桥接 ROS 和 opencv 的 cv_bridge

Release OpenCV 4.6.0 · opencv/opencv · GitHub

Release 4.6.0 · opencv/opencv_contrib · GitHub

GitHub - ros-perception/vision_opencv at noetic

这里将 opencv 4.6.0 以及相应的扩展 opencv_contrib 4.6.0 下载到 ~/Documents 目录下,编译前现确定 opencv 的安装路径,我的安装路径是

CMAKE_INSTALL_PREFIX=/usr/local/

确定 Jetson Orin NX 的算力为 8.7,这个后面要用,参考

CUDA GPUs - Compute Capability | NVIDIA Developer

安装cuda 可以参考上一期文章

Jetson Orin NX 开发指南(4): 安装 cuda 和 realsense_想要个小姑娘的博客-CSDN博客

如果需要安装其他版本的 cuda 与算力的匹配情况可以参考

支持CUDA运算的显卡算力表_cuda算力排行_听风三千里的博客-CSDN博客

https://en.wikipedia.org/wiki/CUDA#GPUs_supported

接下来,进入 opencv 4.6.0 文件夹

cd ~/Documents/opencv-4.6.0/
mkdir build && cd build

预编译 opencv 4.6.0 及其扩展模块 opencv_contrib-4.6.0,生成 Makefiles 文件

cmake -D CMAKE_BUILD_TYPE=RELEASE \
        -D CMAKE_INSTALL_PREFIX=/usr/local/ \
        -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.6.0/modules \
        -D WITH_CUDA=ON \
        -D CUDA_ARCH_BIN=8.7 \
        -D CUDA_ARCH_PTX="" \
        -D ENABLE_FAST_MATH=ON \
        -D CUDA_FAST_MATH=ON \
        -D WITH_CUBLAS=ON \
        -D WITH_LIBV4L=ON \
        -D WITH_GSTREAMER=ON \
        -D WITH_GSTREAMER_0_10=OFF \
        -D WITH_QT=ON \
        -D WITH_OPENGL=ON \
        -D CUDA_NVCC_FLAGS="--expt-relaxed-constexpr" \
        -D WITH_TBB=ON \
        ..

其中

CMAKE_INSTALL_PREFIX=/usr/local/ 为安装地址,

OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.6.0/modules 为扩展模块所在路径,

CUDA_ARCH_BIN=8.7 为 GPU 算力,

编译完成后如下所示

 然后 make install 编译安装 opencv 4.6.0 及其扩展模块 opencv_contrib-4.6.0,电脑性能好的话可以多核编译 make -j8,如果出现兼容性错误的花建议用 make,速度慢一点,终端输入

sudo make install -j8

这里编译会很慢,耐心等待,只要一开始没有什么报错后面就不会报错。

经过漫长的等待,最后编译安装完成后如上所示,最后可以打开 jtop 查看带 GPU 加速的 OpenCV 是否已经安装完成,终端输入

jtop

点击最下反的 7 INFO 我们发现 OpenCV: 4.6.0 with CUDA: YES 表示以及安装成功!

三、配置 cv_bridge 功能包

因为 opencv 的数据和 ROS 的数据需要转化,因此需要通过 cv_bridge 这个桥接工具,接下来我们介绍怎么自己下载安装并配置一个自己的 cv_bridge 功能包。

首先,创建一个 ROS 的工作空间

mkdir -p ~/catkin_pkg/src/
cd ~/catkin_pkg/src/

然后,下载对应版本的源码,因为是 JetPack 5.1.2 对应 Ubuntu 20.04 因此下载 noetic 版本

GitHub - ros-perception/vision_opencv at noetic

终端输入

git clone https://github.com/ros-perception/vision_opencv.git -b noetic

下载完成后因为我们只需要 cv_bridge,所以只需保留 cv_bridge 文件夹,将其放在 ~/catkin_pkg/src/ 目录下,然后修改一下 cv_bridge 的配置文件,终端输入

cd ~/catkin_pkg/src/cv_bridge/
gedit ./CMakeLists.txt

添加自己安装的 带有 GPU 加速的 OpenCV 的 build 文件的路径

include("~/Documents/opencv-4.6.0/build/OpenCVConfig.cmake")

 添加在 CMakeLists.txt 文件的如下位置,

保存后编译该功能包,终端输入

cd ~/catkin_pkg/
catkin_make

如下结果表明编译成功

编译完成后将其路径添加到 ~/.bashrc 文件中,并刷新环境变量

echo "source ~/catkin_pkg/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

至此,自己的 cv_bridge 功能包就制作完成了,如果需要使用别的版本的 OpenCV,只需将 cv_bridge 中 include("~/Documents/opencv-4.6.0/build/OpenCVConfig.cmake") 修改为相应的路径。

### Jeston 平台 CUDA 使用指南 #### 1. Jetson 设备中的 CUDA 支持概述 Jetson 系列设备,如 Jetson Orin NXJETSON TX2,在设计上集成了强大的 GPU 协处理器来增强计算能力。这些设备支持 NVIDIA 的行计算平台和编程模型——CUDA。这使得开发者能够利用 GPU 进行加速运算,特别是在计算机视觉、机器学习等领域。 对于 Jetson Orin NX,为了更好地处理图像数据,通常会安装带有 GPU 加速功能的库,比如 OpenCV 4.6.0配置其依赖项 CUDA 来启用 GPU 加速特性[^1]。 #### 2. 安装 CUDA 工具包 在 Jetson TX2 上部署 CUDA 需要遵循特定版本的要求。例如,当安装 CUDA 9.0 版本时,编译器驱动程序 `nvcc` 显示版权信息以及构建时间戳表明该工具链是在 2017 年发布的[CUDA compilation tools, release 9.0, V9.0.252][^2]。需要注意的是不同型号的 Jetson 设备可能支持不同的 CUDA 版本;因此建议查阅官方文档确认兼容性列表后再做选择。 #### 3. 编写简单的 CUDA 应用程序 下面是一个简单示例展示了如何编写一个基本的 CUDA Hello World 程序: ```cpp #include <stdio.h> __global__ void helloFromGPU(void){ printf("Hello from device!\n"); } int main(){ printf("Hello from host\n"); // Launch kernel on the GPU with one thread. helloFromGPU<<<1, 1>>>(); // Wait for GPU to finish before accessing on host. cudaDeviceSynchronize(); return 0; } ``` 此代码定义了一个名为 `helloFromGPU` 的内核函数,它将在 GPU 上执行打印消息到控制台。主机端调用了这个内核通过同步等待直到完成所有操作。 #### 4. H.265/HEVC 视频编码与解码优化 除了通用计算外,Jetson 平台还特别适用于多媒体处理任务。针对高效视频压缩标准 H.265 或 HEVC,NVIDIA 提供了专门的支持用于硬件级别的编码和解码过程。通过理解 NAL(网络抽象层),可以更深入地掌握如何解析或生成符合 H.265 格式的比特流,这对于实时视频传输非常重要[^3]。
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值