项目实训第三周

本文介绍了在车道线识别任务中,如何通过Ultra-fast-lane-detection模型实现超过300fps的推理速度。模型通过定义车道线为行上的集合,减少了计算量,同时利用全局感受野解决像素间关联,结合全连接层实现平滑性和刚性的先验约束,以提高预测准确性。下一周将进行模型训练和调优。
摘要由CSDN通过智能技术生成

本周工作

第三周继续探索相关的车道线识别的网络,上一周的对于RESA的探索中,当把模型跑通时,发现该模型的时间也并不足够快,在3090显卡上1280*720的图片帧率为50帧左右,这将在Jeston的板子上会很慢,因此我还需要进一步探索更快的车道线检测办法来实现实时检索。
再不断翻阅论文的过程,我发现Ultra-fast-lane-detection这篇论文的思想和前面复现的几个模型不太相同,在论文他所提到了它的推理速度达到了300+fps。因此我便展开了对于Ultra-fast-lane-detection模型的尝试,将该模型进行了复现和相关的测试。

模型介绍:

加快推理预测的主要原理

之前的车道线分割的网络模型是多是根据逐个像素进行预测是否属于车道线,这样极大的减慢了推理的速度。直观上来车道线的预测不需要每个像素的预测。该模型便推出了一种新的车道线定义,它将车道线检测定义在寻找车道线在某些行上的集合,即基于行方向上的位置选择和分类问题。
在这里插入图片描述
如上图所示,该模型针对分出的每一行h上的列维度w上进行车道线位置的选择,h
和w是可以远小于原图像的H,W的,这样推理的速度便会极大的提升。就如下图所示:
在这里插入图片描述
它相比于全像素的分割,计算的量级极大的减少。根据我对论文的阅读,它的推理过程是提取h*w的特征图,对于每一行的预测过程是输出w+1的特征,和上图相同,直观上来讲就是越有可能属于车道线的cell的颜色越深。

全局感受野

车道线的识别不应该单纯只是单像素的分割识别,而是应该各个像素之间要有所关联,也就是感受野的大小,当车道线有所破损时,感受野的作用便凸显出来了。
该模型是一般的基于全连接层的分类,它所使用的特征是全局特征。这样就直接解决了感受野的问题,对于我们的方法,在检测某一行的车道线位置时,感受野就是全图大小,因此他对于遮挡和损坏的车道线的推测效果更好。
其主要关于全连接的代码如图所示

        self.cls = torch.nn.Sequential(
            torch.nn.Linear(1800, 2048),
            torch.nn.ReLU(),
            torch.nn.Linear
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值