CINTA作业二:GCD与EGCD

本文详细解析了贝祖定理的证明过程,介绍了如何通过Bézout系数找到两个整数的最大公约数,并提供了GCD算法的迭代版本、扩展欧几里得算法(EGCD)及批量求解GCD的方法。通过实例演示,展示了这些算法在计算最大公因数中的应用。
摘要由CSDN通过智能技术生成

1.Bezout定理的证明:

设 a 和 b 为非零整数,存在整数 r 和 s 使得:
gcd(a, b) = ar + bs
而且,a 与 b 的最大公因子是惟一的。称 r 和 s 为 Bézout 系数

证明:
设集合S = {am + bn : m, n ∈ Z 且 am + bn ≥ 0},显然集合非空,那么可取其中最小值d=ar+bs,r,s ∈ \in Z
1).
假设存在整数r’与m,使得a=dm+r’,0 ≤ \leq r’<d,
则r’ = a-dm = a-(ar+bs)m = a(1-rm)-bms,显然这样r’ ∈ \in S,又因为r’<d与最小值d矛盾,所以r’只能为0,因而a=dm。同理:b=dn,n ∈ \in Z,所以d为a与b的公因子
2).
设d’为a与b的公因子,则存在p,q ∈ \in Z,使得a=pd’,b=qd’
可得d = ar+bs = rpd’+sqd’ = (rp+sq)d’,显然rp+sq为整数,因此d’|d
综上可知d=ar+bs=gcd(a,b)

2.GCD算法的迭代版本

int my_gcd(int a, int b)
{
	for (int temp; a%b!=0; )
	{
		temp = b;
		b = a % b;
		a = temp;
	}
	return b;
}

3.EGCD算法

int *my_egcd(int a, int b)
{
	int r1 = 1, r2 = 0, s1 = 0, s2 = 1;
	int a[3];//存放r,s,d
	for ( int p=0,temp=0; a % b != 0; )
	{
		p = a / b;
		temp = r2;
		r2 = r1 - p * r2;
		r1 = temp;
		temp = s2;
		s2 = s1 - p * s2;
		s1 = temp;
		temp = a;
		a = b;
		b = temp % b;
	}
	c[0]=r2;
	c[1]=s2;
	c[2]=b;
	return c;
}

4.批处理GCD算法

int my_gcd(int a, int b)//求两数最大公因子的迭代算法
{
	for (int temp; a % b != 0; )
	{
		temp = b;
		b = a % b;
		a = temp;
	}
	return b;
}
int gcd_array(int *a,int len)
{
	int d = a[0];
	for (int i = 0; i < len - 1; a++)
	{
		d = my_gcd(d, *a);//求两数最大公因子的迭代算法,每次与前一次得到的最大公因子求解,保证得到的最大公因子结果满足数组中的所有整数
	}
	return d;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值