证明:转置矩阵不改变矩阵的特征值

转置矩阵不改变矩阵的特征值,这一性质可以通过以下几个方面来理解:

1. 特征值的定义

给定一个方阵 A ,其特征值 \lambda 定义为满足以下特征方程的数:

\det(A - \lambda I) = 0

其中 I 是相同维度的单位矩阵。

2. 转置矩阵的特征方程

考虑矩阵的转置 A^T 。其特征值的定义也是:

\det(A^T - \lambda I) = 0

3. 行列式的性质

一个重要的性质是,矩阵的转置不改变其行列式,即:

\det(A^T) = \det(A)

因此,我们可以得到:

\det(A^T - \lambda I) = \det((A - \lambda I)^T)

利用行列式的性质,这个等式变为:

\det(A - \lambda I)

4. 特征值的结论

由上述推导可知:

\det(A^T - \lambda I) = \det(A - \lambda I) = 0

这意味着,转置矩阵 A^T 的特征值与原矩阵 A 的特征值完全相同。

5. 线性代数中的结论

因此,我们得出结论,转置不改变矩阵的特征值,且这适用于所有方阵。由于转置操作不会改变特征方程的根,原矩阵和转置矩阵具有相同的特征值。

总结

转置不改变矩阵的特征值的原因在于行列式的性质,即转置矩阵的行列式与原矩阵相等,因此它们的特征方程具有相同的根,从而保证了特征值的一致性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值