D.年终奖金
时间限制 : 2.000 sec 内存限制 : 128 MB
题目描述
***公司承接了N个项目需要年底完成,每个项目有一定的难度系数。由于项目太多了,需要招聘大量的技术人员。要求每个技术人员至少完成K个项目。 考虑到有些项目之间相似性以及项目的难易程度,为了避免某些员工只挑选轻松项目,CEO提出了一个奖励机制,当技术人员完成分配给他的任务后,年终可以得到一笔奖金,其得到的酬金将是C + (Tmax–Tmin)2。其中,Tmax表示所做项目的最大的难度系数,Tmin是难度系数的最小值。 你能否计算一下,为了完成所有项目,***公司年终至少需要支付多少酬金?
输入
输入有多组测试数据。对每组测试数据: 第一行: N K C (1<=N,K<=100 1<=C<=5000 ) 第二行 N个正整数分别描述N个项目的难度系数。(1<=难度系数<=10000)
输出
对每组测试数据:输出占一行,一个整数。即,***公司年终至少需要支付的酬金数。
样例输入 Copy
2 1 1
2 4
10 2 3
1 4 10 3 10 1 8 3 8 3
样例输出 Copy
2
13
提示
提示:第一组测试数据,如果一个人完成,酬金为1 + (4–2)2 = 5;如果分给两个人去完成,收费为1 + 1 = 2。
又是最不在行的动态规划,每次都找不到转移方程,想不到合适的表示方式。
思路:老板都是黑心的,想要尽可能的发奖少还要人人都至少完成几个项目。使用dp[ i ]表示完成前 i 个项目的最少奖金。我们先对难度系数进行排序,尽可能的使一个人完成的项目的难度差值小。dp[ i ]的最优解可以来自dp[ 0 ] ~ dp[ i - (k - 1) ]因为一个人至少要完成 k 个项目,所以转移方程就应该是dp[ i ] = min(dp[i], dp[ j - 1 ] + ( arr[ i ] - arr[j]) * (arr[ i ] - arr[ j ]) + c );
#include<bits/stdc++.h>
using namespace std;
#define maxn 10001
#define INF 0x3f3f3f3f
typedef long long LL;
LL dp[maxn];//前i个项目的最小花费
LL arr[maxn];
int main() {
int n, k, c;
while (cin>>n >> k >> c) {
for (int i = 0; i < n; i++) cin >> arr[i];
sort(arr, arr + n);
for (int i = 0; i < maxn; i++) dp[i] = INF;
for (int i = k - 1; i < n; i++) {
for (int j = 0; i - j + 1 >= k; j++) {//每个人至少完成k个项目
dp[i] = min(dp[i], dp[j - 1] + (arr[i] - arr[j])*(arr[i] - arr[j]) + c);
}
}
cout << dp[n - 1] << '\n';
}
return 0;
}