ARIMA时序数据预测知识点

1.时序数据中存在的典型信息:趋势、季节性、噪声 (可通过时间序列分解得到这三部分)

2.自相关性:指在时间序列中当前值和过去值的相关性,包括正相关和负相关,即上升趋势还是下降趋势。相关值之间的时间间隔称为LAG,ACF图和PACF图可以检测数据集中的自相关情况。

ACF:自相关函数,指任意时间t(t=1,2,3...n)的序列值Xt与其自身的滞后值Xt-1(这里取滞后一阶,即lag=1)的线性关系。

PACF:自相关函数,区别于ACF的自相关,PACF给出的是局部自相关。

参考:

如何根据自相关(ACF)图和偏自相关(PACF)图选择ARIMA模型的p、q值_牛客博客 (nowcoder.net)

3.平稳性:通过Dickey-Fuller检测非平稳性,其是一种统计假设检验。如数据是非平稳的,可以通过差分法来消除非平稳性。平稳性检验常常被称为ADF检验,Augmented Dickey-Fuller test;顾名思义,ADF检验是Dickey-Fuller检验的增广形式。DF检验只能用于一阶情况,当序列存在高阶的滞后相关时,可以使用ADF检验。

ADF检验就是判断序列是否存在单位根(因而也被称为单位根检验):如果数据平稳则不存在单位根;否则就会存在单位根。所以ADF检验的H0假设就是存在单位根,如果得到的显著性检验统计量小于单个置信度(10%,5%,1%),则对应有(90%,95%,99%)的把握拒绝原假设。

ADF的零假设是时间序列中存在一个单位根,另一种假设是数据是静止的。检验结果中的P值需要小于对应的置信度0.1,0.05,0.001。

有趋势性的数据即是非平稳数据,平稳性要求数据具有稳定的均值和方差,或者均值和方差不发生明显变化。

4.差分:经ADF检验数据为非平稳后,需要进行差分以去除趋势性;差分后的数据只具有季节性和噪声。还可以使用对数变换和幂变换等方法进行差分。

注:静止的意思是,在时间序列数据中不存在趋势和季节性,或者说数据不随时间变化,没有时间结构。

Python实现对数据的ADF检验 - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值