train.py [-h] -m MODEL -p PREFIX [-d DATA_ROOT] [-n FOLDNUMS] [-a]
[-i ITERATIONS] [-s SEED] [-t TEST_INTERVAL] [-o OUTPREFIX]
[-g GPU] [-c CONT] [-k] [-r] [--avg_rotations] [--keep_best]
[--dynamic] [--cyclic] [--solver SOLVER] [--lr_policy LR_POLICY]
[--step_reduce STEP_REDUCE] [--step_end STEP_END]
[--step_when STEP_WHEN] [--base_lr BASE_LR]
[--momentum MOMENTUM] [--weight_decay WEIGHT_DECAY]
[--gamma GAMMA] [--power POWER] [--weights WEIGHTS]
[-p2 PREFIX2] [-d2 DATA_ROOT2] [--data_ratio DATA_RATIO]
# Database Layer
* Layer type: `Data`
* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DataLayer.html)
* Header: [`./include/caffe/layers/data_layer.hpp`]
* CPU implementation: [`./src/caffe/layers/data_layer.cpp`]
* Parameters (`DataParameter data_param`)
* Parameters
- Required
- `source`: the name of the directory containing the database
- `batch_size`: the number of inputs to process at one time
- Optional
- `rand_skip`: skip up to this number of inputs at the beginning; useful for asynchronous sgd
- `backend` [default `LEVELDB`]: choose whether to use a `LEVELDB` or `LMDB`
# Absolute Value Layer
* Layer type: `AbsVal`
* Sample
layer {
name: "layer"
bottom: "in"
top: "out"
type: "AbsVal"
}
The `AbsVal` layer computes the output as abs(x) for each input element x.
# Accuracy and Top-k
`Accuracy` scores the output as the accuracy of output with respect to target -- it is not actually a loss and has no backward step.
* Layer type: `Accuracy`
* Header: [`./include/caffe/layers/accuracy_layer.hpp`]
* CPU implementation: [`./src/caffe/layers/accuracy_layer.cpp`]
* CUDA GPU implementation: [`./src/caffe/layers/accuracy_layer.cu`]
## Parameters
* Parameters (`AccuracyParameter accuracy_param`)
* From [`./src/caffe/proto/caffe.proto`]
{% highlight Protobuf %}
{% include proto/AccuracyParameter.txt %}
{% endhighlight %}
# Bias Layer
* Layer type: `Bias`
# BNLL Layer
* Layer type: `BNLL`
The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x.“BNLL”(二项式正态对数似然)层将每个输入元素 x 的输出计算为 log(1 + exp(x))。
## Parameters
No parameters.
## Sample
layer {
name: "layer"
bottom: "in"
top: "out"
type: BNLL
}
# Concat Layer
* Layer type: `Concat`
* Input
- `n_i * c_i * h * w` for each input blob i from 1 to K.
* Output
- if `axis = 0`: `(n_1 + n_2 + ... + n_K) * c_1 * h * w`, and all input `c_i` should be the same.
- if `axis = 1`: `n_1 * (c_1 + c_2 + ... + c_K) * h * w`, and all input `n_i` should be the same.
* Sample
layer {
name: "concat"
bottom: "in1"
bottom: "in2"
top: "out"
type: "Concat"
concat_param {
axis: 1
}
}
The `Concat` layer is a utility layer that concatenates its multiple input blobs to one single output blob.
# Contrastive Loss Layer # 对比损失层
* Layer type: `ContrastiveLoss`
## Parameters
* Parameters (`ContrastiveLossParameter contrastive_loss_param`)
# Crop Layer 裁剪
* Layer type: `Crop`
* [Doxygen Docum
# Deconvolution Layer 反卷积
* Layer type: `Deconvolution`
Uses the same parameters as the Convolution layer.
# Dummy Data Layer 虚拟数据层
# Parameter Layer
# Threshold Layer
# Python Layer
* Layer type: `Python`
* Header: [`./include/caffe/layers/python_layer.hpp`]
The Python layer allows users to add customized layers without modifying the Caffe core code.
附录
Caffe的python使用方法:
Caffe提供了一个Python API,使您能够使用Python语言更方便地使用Caffe的功能。通过Caffe的Python API,您可以加载和训练模型、进行推理、执行网络层操作等。
以下是一些常用的Caffe Python API功能和用法示例:
1. 导入Caffe模块:
```python
import caffe
```
2. 加载网络和模型:
```python
net = caffe.Net('path/to/deploy.prototxt', 'path/to/model.caffemodel', caffe.TEST)
```
3. 执行前向传播(推理):
```python
input_data = ... # 输入数据,numpy数组格式
net.blobs['data'].data[...] = input_data # 将输入数据设置到网络的'data'层
net.forward() # 进行前向传播计算
output_data = net.blobs['output'].data # 获取输出数据
```
4. 执行反向传播(训练):
```python
loss = net.blobs['loss'].data # 获取损失值
net.zero_grad() # 清空梯度信息
net.backward() # 执行反向传播计算
net.update() # 更新网络参数
```
5. 提取特征(特征提取):
```python
input_data = ... # 输入数据,numpy数组格式
feature = net.blobs['fc7'].data # 获取'fc7'层的特征向量
feature = net.forward(data=input_data, end='fc7')['fc7'] # 通过前向传播获取特征
```
6. 使用预训练模型进行迁移学习:
```python
pretrained_net = caffe.Net('path/to/pretrained.prototxt', 'path/to/pretrained.caffemodel', caffe.TEST)
new_net = caffe.Net('path/to/new_net.prototxt', caffe.TRAIN)
# 将pretrained_net的权重复制到new_net
for layer_name, blob in pretrained_net.params.items():
if layer_name in new_net.params:
for i in range(len(blob)):
new_net.params[layer_name][i].data[...] = blob[i].data
```