《一种基于图约束的心电分割变化点检测方法》论文阅读

本文提出了一种新的图约束变化点检测(GCCD)方法,用于无噪声条件下心电图的R峰定位,无需预处理,表现出高精度和鲁棒性。在MIT-BIH-ar数据库上,GCCD方法的性能与先进算法相当,尤其是在处理噪声数据时。
摘要由CSDN通过智能技术生成

《A Graph-constrained Changepoint Detection Approach for ECG Segmentation》

Atiyeh Fotoohinasab, Toby Hocking, and Fatemeh Afghah,

摘要

心电图(ECG)信号是评估心血管疾病最常用的无创工具。对心电信号进行分割,定位其本构波,特别是r峰,是心电处理和分析的关键步骤。多年来,人们提出了几种具有不同特征的分割和QRS复杂检测算法;然而,它们的性能高度依赖于应用预处理步骤,这使得它们在门诊护理设置和远程监控系统的实时数据分析中不可靠,其中收集的数据非常嘈杂。此外,目前的心电信号形态分类繁多,计算量大,存在一些问题。在本文中,我们提出了一种新的基于图的最优变点检测(GCCD)方法,该方法可以在不使用任何预处理步骤的情况下可靠地检测峰值位置。该模型能保证计算出全局最优的变点检测解。它在本质上也是通用的,可以应用于其他时间序列生物医学信号。基于MIT-BIH心律失常(MIT-BIH- ar)数据库,该方法的总灵敏度Sen = 99.76,阳性预测PPR = 99.68,检测错误率DER = 0.55,与其他最先进的方法相当。1 2

1、介绍

心电图(ECG)是一种准周期性的、有节奏地重复的生物医学信号,它包含了有关心肌电活动的信息。心电图的一个周期称为心跳,是由P、QRS复合体和T波形以及PQ和ST段的排列来描述的。在所有波形中,QRS复合体是最引人注目的波形,因为它代表了心室去极化,反映了心脏电活动的主要部分。准确检测QRS复合物内最高峰和唯一正峰——R峰的位置对于获得QRS复合物的形态具有至关重要的作用。此外,R峰的定位可作为心率自动测定的基础。因此,它是识别任何心脏异常的重要标准。由于心率变异性(HRV)与多种生理系统(血管舒缩、呼吸、中枢神经、体温调节等)之间的关系,R峰检测不仅可以对心脏病进行无创诊断,而且可以对许多其他疾病进行无创诊断。在无噪声的心电信号中,显示R峰是一项简单的任务;然而,当心电信号被噪声和伪影破坏时,挑战就出现了。 

人们提出了几种方法来检测心电信号中的不同波。然而,这些方法中的大多数仍然存在一些缺点,例如在一些危及生命的心律失常中具有决定性形态模式的ECG波形的误检,或者算法的高复杂性是在线处理或长记录分析的障碍。通常,当前的方法包括两个主要步骤;预处理和检测。在预处理步骤中,该算法试图消除噪声和伪影,并突出显示ECG的相关部分[1],[14]。在第二步中,大多数方法首先使用预处理步骤的结果定位R-峰,然后通过定义一组启发式规则来检测其他波[9]。然而,在门诊护理设置和远程监控系统的实时数据处理中,收集的数据噪声很大,基于预处理的算法效果较差。此外,大多数检测算法的性能高度依赖于所使用的数据集,并且R峰检测不正确会导致其他波的识别不正确。

 在心电波检测领域,大多数最先进的方法要么是基于小波变换、隐马尔可夫模型(HMM),要么是基于简单的数学运算,如微分、积分和平方。小波变换是捕获心电信号非平稳行为的常用方法[13]。然而,小波变换的缺点是难以从QRS复合波的各种形状中确定合适的母小波,并在检测步骤中找到所需的阈值。更重要的是,离散小波变换(DWT)往往不能从信号的短记录中得到可靠的结果。算法源于简单的数学运算,计算效率高,因此非常适合大规模数据集的实时分析。Pan Tompkins[12]算法及其修正[5]是这一类中最流行的技术。然而,在心电信号受噪声干扰较弱的情况下,保证了它们的高性能。隐马尔可夫模型(hmm)也是在心电分割任务中备受关注的图形模型,它考虑了波形之间的时间依赖性。除了上述方法外,一些研究还利用深度学习解决了心电描画问题。尽管基于深度学习的算法在分类问题上表现出了很高的性能,但它们依赖于大规模的数据集来训练算法,并且存在不平衡类问题[11]。

在这项工作中,我们利用Hockking等人在[7]中引入的图约束变点检测(GCCD)模型,以快速有效的方式检测R-峰位置。Hocking等[7]提出了一种算法,该算法可以解决数据量具有对数复杂度的图约束分段均值的变点检测问题,因此在庞大的数据集上具有很高的效率。他们的模型可以将时间序列信号表示为一组不同长度的恒定值片段,以及它们在空间或时间上的精确位置。他们已经证明,他们的模型在检测DNA拷贝数谱[8]和ChIPsequencing[6]等基因组数据的突变方面具有很高的准确性。在本文中,我们指出该模型不仅适用于周期信号,而且优于其他有关心电圈定的最新方法。

文献中有一些研究利用变化点检测模型来发现心律的突变。然而,据我们所知,这是第一个使用变化点检测模型来分割心电波形的研究。这项工作的关键贡献之一是使用图在一定程度上将信号的生物先验知识应用到模型中,并降低了模型的复杂性。该方法不需要预处理步骤,因为它利用变化点的稀疏性对信号进行去噪以及检测突变。因此,它可以更有效地实时处理噪声数据。此外,GCCD考虑到整个心跳,对每个波进行单独检测和研究,而不是目前大多数方法利用R波的位置来检测其他波。

本文的其余部分组织如下。在下一节中,我们将描述提出的GraphConstrained Changepoint Detection模型及其在R-peak定位中的应用。第三部分描述了本研究中使用的数据集,讨论了结果,并比较了所提出算法与其他最先进算法的性能。最后,对本文的研究工作和贡献进行了总结。

2、方法 

将心电波形的描述问题视为对非平稳心电信号的变点检测问题。它将周期心电信号表示为分段局部平稳的小块,每个小块是一段数据点的均值。该模型采用原始心电信号和预定义的图,该图对信号中的预期变化点进行编码,作为输入,并产生期望段的起始/偏移和平均值。图1说明了在检测正常心电图波形中提出的算法的概述。在下一节中,我们将简要描述GCCD模型。


图1 图约束变更点检测(GCCD)模型的概述。GCCD模型以约束图和原始心电信号作为输入,在输出处检测约束图节点对应的段。每条边上方的向上/向下箭头分别表示段均值的预期向上/向下变化。在该模型中,所提出的约束图对于每个主波形(P,Q,R,S,T)以及基线(B1-B3),它们是中间状态。

 A.图约束变更点检测模型

假设一个有约束的变点模型,用图G = (V;E),其中顶点V \in \{1,..,|V|\}表示隐藏状态或段(不一定是波形),有向边E \in \{1,..,|E|\}表示状态或段之间可能发生的变化。每条边e \in E根据预期变化序列的先验知识对以下相关数据进行编码:

• 从\underline{v}_e\overline{v}_e的变化点e的源\underline{v}_e \in V和目标\overline{v}_e \in V顶点/状态。

• 一个非负的惩罚常数\lambda_e \in R_+,它是改变点e的代价。

•约束函数ge: R×R->R定义了每个变化点e前后可能的平均值。如果mi是变化点之前的平均值,mi+1是变化点之后的平均值,则约束为ge(mi;mi +1)≤0。这些函数可以用来约束方向(向上或向下)和/或变化的大小(大于/小于一定数量)。

 数学上,给定输入信号Y = \{y_1,..,y_n\}图G = (V;E),寻找变化点c,段均值m,隐藏状态s,可通过求解以下优化问题来执行:

 上述方程包括一个数据拟合项,涉及每个数据点的负对数似然l,以及一个模型复杂性项,涉及每个变点的成本λci。更具体地说,正向的惩罚参数λ正则化模型预测的变化点/段的数量。较大的惩罚λ产生更稀疏的变化点向量c,或者更具体地说,减少变化点的数量。约束函数ge还编码了期望的上下变化和两种状态均值之间的最小振幅差。对于所有可能的变化i,使得ci = 0,约束(2)强制不改变平均mi = mi+1和状态si = si+1变量。对于所有可能的变化i,使得c_i \neq 0,约束(3)强制通过约束函数gci (mi;mi +1)≤0,状态变化(si;si +1) = (\underline{v}_{c_i};\overline{v}_{c_i})。此外,上述优化问题利用动态规划算法递归计算数据点和隐藏状态上的代价函数。

B.心电波形检测

首先,根据每个波形(P-, QRS-, t -等)在一个心脏周期内的不同可能形态,定义约束图G的拓扑结构及其相应的参数。这个约束图指定了一个ECG周期内预期形态学变化的生物学先验知识。更具体地说,约束图中的每个节点服务于信号中预期的隐藏状态/段,每个边编码到新状态转换所需的条件。这些条件是根据预期的两个连续段的最小振幅差和波形的极性来确定的。然后,GCCD模型利用约束图提供的先验知识对原始心电信号进行分割。值得再次强调的是,GCCD模型不再需要任何预处理步骤。

3、实验研究

A.数据集

我们使用麻省理工学院- bih心律失常(MIT-BIH- ar)数据库来评估GCCD模型,该数据库由47名受试者的48个ECG记录组成,每个记录以360 Hz和30 min的频率采样,振幅分辨率为200 mV[10],[4]。每次记录由两个动态ECG通道组成,这些通道分别来自修改导联II (MLII)和修改导联V1、V2、V4或V5中的一个。在本研究中,仅使用了MLII,因此将记录102和107排除在考虑之外。该数据库包含心跳类别信息和r波位置信息的注释,这些信息由两个或更多的心脏病专家独立验证。我们使用提供的R波位置注释来评估所提出算法的性能。

 B.实验结果

图2展示了该模型在MITBIH-AR数据集的两条记录(# 100和#230)窗口的r -峰定位中的性能示例。通常用灵敏度(Sen)、阳性预测率(PPR)和检测错误率(DER)来评价r峰检测算法的性能,其计算公式为:

图2 
使用所提出的模型对MITBIH-AR数据集的记录100和230进行r峰检测的演示。a-b:建议的模型分别将100和230的记录表示为分段局部平稳段(蓝线)。提取的r峰位置被标记为红色标签。c-d:上述两个模型的图结构。每个图的每个状态都有一个顶点,包括R波的状态R。在每条边e下面,我们表示惩罚λe,它要么是常数λ > 0,要么是零;上面是常数δ;约束函数ge(mi;mi +1) = δ(mi−mi +1) +γ≤0 (δ = 1表示非递减变化,用向上箭头表示,δ = - 1表示非递增变化,用#表示,γ≥0是最小变化幅度)。

 

为了将本文方法的性能与文献中其他方法进行比较,我们采用上述统计指标对GCCD算法进行评价。表1表示考虑MIT-BIH数据集中所有48条记录的GCCD算法的r峰检测成功率。如表所示,本文方法在r峰检测中取得了显著的效果,Sen = 99.76, PPR = 99.68, DER = 0.55。每个记录的约束图是通过将信号的整体形态属性与每个波形的预先指定类别相匹配来手动定义的[15]。除6例外,其余病例Sen和PPR值均大于99%。对于数据集中26例检测,Sen值和PPR值分别为100%。Sen和PPR值小于99%的记录主要是由于两个原因:在记录的某些周期中,QRS复合波的形态没有R峰,或者R峰的幅度与下一个负峰的幅度相比太低;S波。值得一提的是,记录105和108的结果作为数据集中噪声最大的记录,证明了模型在不使用预处理步骤去除噪声的情况下检测高噪声水平下r峰位置的能力。表2比较了GCCD算法与其他先进方法的性能。该表的结果表明,在不使用任何预处理步骤的情况下,所提出的模型的性能与文献中使用预处理步骤的其他R波检测方法相当。

 

本研究的结果证明了变点检测模型是一种很有前途的心电波形检测方法。所提出的模型具有检测各种心电图形态的r峰位置的能力。此外,GCCD模型还可以通过将R波以外的其他波形(即P、Q、S和T波)的相应知识包含到约束图中,从而潜在地检测到R波以外的波形(即P、Q、S和T波)。在这项研究工作中,我们只检测r峰的位置,因为MIT-BIH-AR数据库刚刚提供了这个峰的注释。如前所述,对于数据库中的某些情况,由于在某些周期中没有r峰或该峰的幅值较低,GCCD模型的性能明显较低。使用多路径约束图可以提高GCCD模型在这些特定情况下的效率。多路径约束图可用于识别所有心电波形以及不含r峰的QS-complex。此外,可以基于每条记录以批处理方式学习约束图,从手动定义约束图中推测模型,这是未来的工作。

4、结论

在大多数自动心电分析工具中,心电波形的检测起着至关重要的作用。在文献中发现的几种心脏病检测的最常见特征是从R峰的形态特征计算出来的,R峰是心电信号一个周期内最重要的基准点。在本文中,我们首次应用了一种变化点检测模型,即图约束变化点检测模型来提取R峰的位置。约束图根据心电信号的可能形态对每个心脏周期的预期变化点的先验知识进行编码。

该模型能够以对数线性复杂度检测R峰位置,且不需要预处理步骤。评价结果表明,该方法具有较高的R峰检测性能,特别是在有噪声的记录中,与文献中已有的算法相比,其性能高度依赖于预处理步骤中的去噪。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值