在振动分析和动平衡中,相位的测量是确定振动信号与转子旋转位置之间时间关系的核心步骤,而初始相位的确定更是定位不平衡量角度的关键。以下是其实现原理及具体方法的详细说明:
一、相位测量的基本原理
1. 相位的定义
- 相位角(Phase Angle):振动信号(如位移、速度或加速度)的峰值相对于转子某一固定参考点(如键相标记)的角度差,通常以度(°)或弧度(rad)表示。
- 例如:若振动峰值出现在键相脉冲后 3 0 ∘ 30^\circ 30∘,则相位角为 3 0 ∘ 30^\circ 30∘。
2. 相位测量的物理意义
- 在动平衡中:相位角直接指示不平衡量的方位。例如,若初始振动的相位角为 12 0 ∘ 120^\circ 120∘,则不平衡质量可能位于转子 12 0 ∘ 120^\circ 120∘ 方向(需结合系统动态特性修正)。
二、相位测量的实现方法
1. 键相传感器(光电传感器)的作用
- 提供参考脉冲:转子每旋转一周,键相传感器生成一个脉冲信号,标记转子的零度位置(即参考点)。
- 同步信号采样:振动信号与键相脉冲同步采集,确保相位计算的时间基准一致。
2. 相位测量的核心步骤
(1) 数据同步采集
- 使用键相脉冲作为触发信号,启动振动信号的采样。
- 振动传感器(加速度、速度或位移)与键相传感器信号同时记录。
(2) 提取振动信号的相位信息
-
时域分析法(过零点法):
- 确定振动信号的峰值时刻(如位移最大值或速度零点)。
- 计算峰值时刻与键相脉冲之间的时间差 Δ t \Delta t Δt。
- 通过转速
N
N
N(RPM)转换为相位角:
相位角 = Δ t × 36 0 ∘ ( 60 / N ) = 6 × N × Δ t ( ° ) \text{相位角} = \frac{\Delta t \times 360^\circ}{(60/N)} = 6 \times N \times \Delta t \quad (°) 相位角=(60/N)Δt×360∘=6×N×Δt(°)
-
频域分析法(FFT):
- 对振动信号进行傅里叶变换,提取与转速频率(1×RPM)对应的频谱分量。
- 直接读取该频率分量的相位角(相对于键相脉冲)。
(3) 初始相位的确定
- 初始相位:未添加任何测试配重时,振动信号的相位角(即 V 0 V_0 V0 的相位)。
- 实现步骤:
- 转子以工作转速旋转,测量初始振动信号。
- 键相脉冲标记转子的参考位置(如反光贴片所在的 0 ∘ 0^\circ 0∘)。
- 通过时域或频域方法,计算振动峰值相对于键相脉冲的相位差,即初始相位。
三、初始相位确定的实际挑战与解决方案
1. 噪声干扰
- 问题:环境噪声或传感器噪声会掩盖真实振动峰值。
- 解决方案:
- 滤波:使用带通滤波器(中心频率为转速频率)去除无关频段噪声。
- 多次平均:采集多周期信号并平均,抑制随机噪声。
2. 转速波动
- 问题:转速不稳定导致相位计算误差。
- 解决方案:
- 锁相环(PLL):实时跟踪转速变化,动态调整采样频率。
- 转速闭环控制:使用变频器保持转速恒定。
3. 传感器安装误差
- 问题:键相传感器未对准转子标记,导致参考相位偏移。
- 解决方案:
- 机械校准:确保键相传感器正对反光标记中心。
- 软件补偿:通过已知角度偏差修正相位读数。
四、示例:动平衡中的初始相位测量流程
1. 实验准备
- 在转子轴上贴反光标记(键相参考点)。
- 安装键相传感器和振动传感器(如电涡流位移传感器)。
2. 数据采集
- 启动转子至额定转速(如 3000 RPM)。
- 同步采集键相脉冲和振动信号(采样频率 ≥ 10×转速频率)。
3. 信号处理
% 示例代码:通过FFT计算初始相位
vibration_signal = ... % 原始振动信号(时域)
tach_signal = ... % 键相脉冲信号(时域)
% 步骤1:提取转速频率(1×RPM)
rpm = 3000; % 转速 (RPM)
fs = 10e3; % 采样率 (Hz)
f_rpm = rpm / 60; % 转速频率 (Hz)
% 步骤2:计算振动信号的FFT
N = length(vibration_signal);
f = (0:N-1)*(fs/N);
Y = fft(vibration_signal);
% 步骤3:找到转速频率对应的频谱线
[~, idx] = min(abs(f - f_rpm));
phase_initial = angle(Y(idx)) * 180/pi; % 初始相位(度)
% 步骤4:相对于键相脉冲的相位修正
% (假设键相脉冲在时间零点触发)
phase_initial = mod(phase_initial, 360); % 相位归一到 [0°, 360°)
4. 结果解读
- 若计算得到 phase_initial = 12 0 ∘ \text{phase\_initial} = 120^\circ phase_initial=120∘,表示不平衡量位于转子 12 0 ∘ 120^\circ 120∘ 方向(需结合影响系数修正实际位置)。
五、相位测量中的关键细节
1. 传感器类型的影响
- 位移传感器(电涡流):直接测量轴相对位移,相位无延迟。
- 加速度传感器:高频响应好,但需积分成位移或速度信号,积分可能引入相位偏移(需校正)。
- 速度传感器:中频适用,相位特性稳定。
2. 动态相位补偿
- 对于柔性转子或变转速工况,需考虑系统的相位滞后(由阻尼和刚度引起),通过传递函数模型或实验标定进行补偿。
3. 多平面平衡的相位处理
- 在双平面平衡中,需分别测量两个平面振动的相位,并通过交叉影响系数矩阵解耦相位耦合效应。
六、总结
相位的测量本质上是将时间差转换为角度差,其核心在于:
- 键相脉冲提供参考零点,标记转子的绝对位置。
- 振动信号与键相信号同步采集,通过时域或频域分析计算相位差。
- 初始相位的准确性直接决定不平衡量定位的精度,需通过滤波、转速控制和传感器校准等手段优化。
在实际动平衡中,相位角的误差需控制在 ± 5 ∘ \pm 5^\circ ±5∘ 以内,以确保校正配重安装角度的有效性。