【YOLO系列】YOLOv8理论

参考笔记:YOLOv8详解 【网络结构+代码+实操】-CSDN博客

文中的大多内容和图片引自该博客

学习视频:Enzo_Mi的个人空间-Enzo_Mi个人主页-哔哩哔哩视频的YOLOv8系列

2.1、yolov8原理引言_哔哩哔哩_bilibili


目录

1.YOLOv8概述

2.模型结构设计

2.1 Backbone和Neck的具体变化

2.2 Head的具体变化

3.Loss计算

4.训练数据增强

5.训练策略

6.模型推理过程


1.YOLOv8概述

YOLOv8 算法的核心特性和改动可以归结为如下:

  • Backbone:
    backbone、neck 可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同大小模型(n、s、m、l、x)调整了不同的通道数

  • Head Head 部分与 YOLOv5 相比有两大改进:

    • 换成了主流的解耦头结构(Decouped-Head)将分类头和检测头分离

    • Anchor-Based --> Anchor-Free

  • Loss :正负样本匹配方式改变、移除置信度损失、增加Distribution Focal Loss(DFL)

  • Train:借鉴 YOLOX ,在训练阶段的最后 10 epoch 关闭 Mosiac 数据增强,可以有效地提升精度

2.模型结构设计

下图中左侧为 YOLOv5-n,右侧为 YOLOv8-n
在暂时不考虑 Head 情况下,对比 YOLOv5 YOLOv8 yaml 配置文件可以发现改动较小

YOLOv5-n、YOLOv8-

### YOLOv8理论基础及原理 #### 一、YOLO系列的核心思想 YOLO(You Only Look Once)是一种基于单阶段的目标检测算法,其核心思想是将目标检测视为一个回归问题。通过输入一张图片并直接预测边界框的位置和类别概率来完成检测任务[^1]。 #### 二、YOLOv8的主要改进与特性 YOLOv8作为最新的迭代版本,在多个方面进行了优化和增强: 1. **性能提升** 相较于前代版本,YOLOv8在保持高精度的同时显著提高了推理速度。这得益于网络结构的设计调整以及更高效的训练策略[^3]。 2. **多功能支持** 不仅限于传统的目标检测任务,YOLOv8还扩展到了实例分割、图像分类等领域。这种多用途的能力使其适用于更多实际场景。 3. **可扩展性强** 开发团队并未简单地命名项目为“YOLOv8”,而是采用了更具包容性的名称——`Ultralytics`框架。这意味着该工具不仅兼容YOLO家族中的不同模型,还可以轻松集成其他类型的神经网络架构,甚至包括非YOLO系的模型[^2]。 4. **资源消耗对比** 虽然YOLOv8相较于YOLOv5增加了计算复杂度(表现为更高的参数量和FLOPs),但在大多数情况下仍能提供更快的速度或更好的准确性权衡。 #### 三、技术实现细节 以下是关于如何构建和运行YOLOv8的一些关键技术要点: - **数据预处理** 数据集需经过标准化转换以便适配模型需求;通常涉及尺寸缩放、颜色空间变换等操作。 - **损失函数设计** 结合了置信度得分、位置偏差以及其他辅助指标共同指导权重更新过程,从而确保最终输出尽可能接近真实标签分布情况。 - **后处理机制** 利用NMS(Non-Maximum Suppression)消除冗余候选区域,并按照设定阈值得到最优解集合。 ```python from ultralytics import YOLO # 加载预训练模型 model = YOLO('yolov8n.pt') # 使用模型进行推断 results = model.predict(source='path/to/image', save=True) ``` 上述代码片段展示了加载YOLOv8 nano版模型并对指定路径下的图片执行预测的基本流程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值