YOLOv8预测流程-原理解析[目标检测理论篇]

本文深入解析YOLOv8的预测流程,涵盖图像预处理(letterBox归一化)、模型推理(Box与Cls解码)、后处理(NMS与Scale_boxes)模块。通过理解每个阶段的作用,帮助读者掌握目标检测模型的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.前言

        预测模块主要是对图片进行预测的过程,分成了以下三个流程:图像预处理(Preprocess)、模型推理(Inference)以及后处理模块(Postprocess)。

        输入一张任意尺寸的图片,首先需要先对图片进行预处理,使其宽高能够符合网络输入尺寸(比如640x640)并且进行归一化等其他处理;接着对预处理后的图片输入网络得到Box和Cls两个预测结果;最后需要对这两个预测结果进行解码等后处理操作,如下图所示:

        后面的章节将按照这三个顺序来展开说明。

2.图像预处理模块

        预处理流程,这一步主要是对图像进行预处理,包括:letterbox、BGR转换成RGB、拓展成四个维度并且调整维度顺序以及归一化这四个步骤.

        首先介绍一下letterBox操作,在YOLOv8中,Letterbox的作用是为了将图像在不改变原始宽高比例的情况下,缩放成一个统一的图像尺寸,但是在训练、验证和预测时候的Lette

### YOLOv8 后处理解码实现方式 YOLOv8作为YOLO系列的最新版本,在后处理方面继承了许多前代的优点,同时也进行了优化改进。具体来说: #### 1. 坐标解码 与YOLOX相似,YOLOv8中的`x`, `y`坐标输出同样未经过sigmoid激活函数直接给出[^1]。而宽度(`w`)和高度(`h`)则是通过指数函数(exp)进行解码,这有助于保持尺度不变性并防止负数出现。 ```python def decode_boxes(pred): xy = pred[..., :2].sigmoid() * 2 - 0.5 # cx, cy relative to grid cell center wh = (pred[..., 2:4].exp() * anchors).clamp(max=1E3) # w, h scaled by anchor boxes return torch.cat((xy, wh), dim=-1) ``` #### 2. 类别预测 对于类别概率,则采用了softmax或sigmoid函数来进行多分类或多标签分类的任务处理。这种方式可以更好地适应不同场景下的需求。 ```python cls_probabilities = pred[..., 5:].sigmoid() ``` #### 3. 置信度评分 目标存在与否的概率依旧采用sigmoid函数来计算置信度得分[^2]。此分数用于衡量模型对该区域内是否存在物体的信心程度。 ```python objectness = pred[..., 4].sigmoid().unsqueeze(-1) ``` #### 4. 非极大值抑制(NMS) 为了去除冗余边界框,NMS操作必不可少。在GPU加速环境下,可以通过CUDA内核高效完成这一任务[^4]。值得注意的是,YOLOv8可能引入了一些新的剪枝策略以进一步提升效率。 ```cpp __global__ void nms_kernel(float* d_bboxes, int num_boxes, float iou_threshold){ // Implementation of NMS on GPU using CUDA } ``` #### 5. 结果整理 最终得到的检测结果会按照左上角(xmin, ymin)、右下角(xmax, ymax)的形式表示,并附带相应的类别标签及置信度分数组合在一起形成完整的输出结构。 ```python final_output = torch.cat([bboxes[:, :4], objectness, cls_probabilities.max(dim=-1)[0]], dim=-1) ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃鱼不卡次

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值