数列极限相关

数列极限

零、前言

此仅为笔者考研数学学习笔记,不太完善,日后遇到新知也会及时进行补充,如有不正之处还望多多指正,感激不尽!
笔者这里安排的顺序和课本上的不太一样,将二、三两节做了个调序

一、数列极限的概念

数列有极限 <=> 数列收敛

  1. D e f   1   : ε − N 定义 Def\ 1\ :\varepsilon - N 定义 Def 1 :εN定义
  2. D e f   1 ′   : 任给 ε > 0 , 若在 U ( a ; ε ) 之外数列 { a n } 中的项至多只有有限个 , 则称数列 { a n } 收敛于极限 a Def\ 1'\ : 任给\varepsilon>0,若在U(a;\varepsilon)之外数列\{a_n\}中的项至多只有有限个,则称数列\{a_n\}收敛于极限a Def 1 :任给ε>0,若在U(a;ε)之外数列{an}中的项至多只有有限个,则称数列{an}收敛于极限a

二、数列收敛的条件

1. 有没有?
  1. D e f   1 Def\ 1 Def 1
  2. D e f   1 ′ Def\ 1' Def 1
  3. ( 单调有界定理 ) : 在实数系中 , 有界的单调数列必有极限 (单调有界定理):在实数系中,有界的单调数列必有极限 (单调有界定理):在实数系中,有界的单调数列必有极限
  4. 任何数列都存在单调子列 任何数列都存在单调子列 任何数列都存在单调子列
  5. ( 致密性定理 )  任何有界数列必定有收敛的子数列 (致密性定理)\ 任何有界数列必定有收敛的子数列 (致密性定理) 任何有界数列必定有收敛的子数列

注:

  1. 对于定义1 类型的求解数列极限,有两种利用二项式找N的设法,一种是针对 a n \sqrt[n] a na 类型,可以令 a n = 1 + h \sqrt[n]{a}=1+h na =1+h;对于另一种对于 ∣ q ∣ n  且 ( ∣ q ∣ < 1 ) |q|^n\ 且(|q|<1) qn (q<1),这里可以考虑令 ∣ q ∣ = 1 1 + h |q|=\frac{1}{1+h} q=1+h1。这两种换元的本质实际上都是“极限值+无穷小”的一个组合,如果之后遇到这方面难证的可以往这里想一想…
  2. 对于定义1’ ,比较好的用处就是去证明数列的极限并不存在,比如对于含 ( − 1 ) n (-1)^n (1)n或者是三角函数等,我们通过构造其偶子列、奇子列或者是 2 k π 2k\pi 2 子列等,证明其子列的极限不唯一去说明极限不存在
  3. 一般来说求证数列极限存在用单调有界定理会比较多,并结合等式两边同时取极限去求极限的值
2. 怎么求?
  1. 直接求,不过需要对原式进行处理,常见的有构造平方差、列项相消等

    例如:

    lim ⁡ n → ∞ n ( n + 1 − n ) = lim ⁡ n → ∞ n n + 1 + n = 1 2 \begin{align} &\lim_{n\to \infty}\sqrt{n}(\sqrt{n+1}-\sqrt{n}) \\ =&\lim_{n\to \infty}\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\\ =&\frac{1}{2} \end{align} ==nlimn (n+1 n )nlimn+1 +n n 21

    亦或是如:
    lim ⁡ n → ∞ ( 1 + α ) ( 1 + α 2 ) ⋯ ( 1 + α 2 n ) ,   ∣ α ∣ < 1 = lim ⁡ n → ∞ ( 1 − α ) ( 1 + α ) ⋯ ( 1 + α 2 n ) 1 − α = lim ⁡ n → ∞ 1 − α 2 n + 1 1 − α = 1 1 − α \begin{align} &\lim_{n\to \infty}(1+\alpha)(1+\alpha^2) \cdots (1+\alpha^{2^n}),\ |\alpha|<1 \\ =&\lim_{n\to \infty}\frac{(1-\alpha)(1+\alpha)\cdots(1+\alpha^{2^n})}{1-\alpha}\\ =&\lim_{n\to \infty}\frac{1-\alpha^{2^{n+1}}}{1-\alpha}\\ =&\frac{1}{1-\alpha} \end{align} ===nlim(1+α)(1+α2)(1+α2n), α<1nlim1α(1α)(1+α)(1+α2n)nlim1α1α2n+11α1

  2. 同上所说,利用单调有界定理,首先通过含 a n + 1 a_{n+1} an+1 a n a_n an 的不等式求得数列的单调关系,在通过前面的单调关系将 n+1 项放缩掉转化成只含 a n a_n an 的不等式,由此推出 a n a_n an 的界证明有极限后再结合题目的其他条件去求解极限的具体值

  3. 利用放缩 + 夹逼准则

    通常对于求和类型的数列极限,且观察到类似于 1 n 2 \frac{1}{n^2} n21这样经典的放缩提示信号时,可以考虑往这里思考,不过放缩的尺度仍然是需要积累的一点

    例如:

    lim ⁡ n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) 由于  n 2 n 2 ≤ 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ≤ n n 2 而  lim ⁡ n → ∞ 1 2 n = lim ⁡ n → ∞ 1 n = 0 ,所以原数列极限也为 0 \begin{align} &\lim_{n\to \infty}(\frac{1}{n^2+1}+\frac{1}{n^2+2}+\cdots+\frac{1}{n^2+n})\\ 由于\ &\frac{n}{2n^2}\le \frac{1}{n^2+1}+\frac{1}{n^2+2}+\cdots+\frac{1}{n^2+n}\le\frac{n}{n^2}\\ 而\ &\lim_{n\to \infty}\frac{1}{2n}=\lim_{n\to\infty}\frac{1}{n}=0, 所以原数列极限也为0 \end{align} 由于  nlim(n2+11+n2+21++n2+n1)2n2nn2+11+n2+21++n2+n1n2nnlim2n1=nlimn1=0,所以原数列极限也为0

  4. 利用定积分的定义
    同样地,如果利用定积分的定义去解决这中求和类型的极限,也有可能会出现用到放缩得到左右两变定积分的值相同,再利用迫敛性的这种情况

  5. stolz定理
    作为数列极限中的洛必达,stolz定理能利用差分的方式解决一部分难解的极限问题,同时,反向构造差分,利用 a n = S n − S n − 1 a_n=S_n-S_{n-1} an=SnSn1 也可以得出 { S n } \{S_n\} {Sn} 这个数列的差分公式,再利用stolz,总而言之,stolz 解决数列差分后的极限问题十分高效,当然,也得具体问题具体分析,不能盲目盯住stolz ^ ^

三、数列收敛的性质

  1. 保号性

    若 lim ⁡ n → ∞ a n = a > 0 ( 或 < 0 ) ,则对任何 a ′ ∈ ( 0 , a ) ( 或 a ′ ∈ ( a , 0 ) ,存在正整数 N ,使得当 n > N 时,有 a n > a ′ ( 或 a n < a ′ ) 若\lim\limits_{n\to\infty}a_n=a>0(或<0),则对任何a^{'}\in(0,a)(或a^{'}\in(a,0),存在正整数N,使得当n>N时,有a_n>a^{'}(或a_n<a^{'}) nliman=a>0(<0),则对任何a(0,a)(a(a,0),存在正整数N,使得当n>N时,有an>a(an<a)

  2. 保不等号性

    设 { a n } 与 { b n } 都是收敛数列,若存在正整数 N 0 ,使得当 n > N 时有 a n ≤ b n ,则 lim ⁡ n → ∞ a n ≤ lim ⁡ n → ∞ b n 设\{a_n\}与\{b_n\}都是收敛数列,若存在正整数N_0,使得当n>N时有a_n\le b_n,则\lim\limits_{n\to\infty}a_n\le \lim\limits_{n\to\infty}b_n {an}{bn}都是收敛数列,若存在正整数N0,使得当n>N时有anbn,则nlimannlimbn

  3. 数列 { a n } \{a_n\} {an}收敛的充要条件是: { a n } \{a_n\} {an}的任何子列都收敛

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szfmsmdx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值