多元函数微分学复习

此为笔者考研复习拙见,如有错误,望各位读者不惜笔墨不啬赐教,鄙人将不胜感激


一、相关概念

1. 多元函数极限

lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \lim\limits_{(x,y)\to(x_0,y_0)}f(x,y)=A (x,y)(x0,y0)limf(x,y)=A

注:

  1. ( x , y ) (x,y) (x,y) 的趋向方式是 “任意方式”
  2. 类似于一元函数极限,多元函数极限也存在如下几个性质
    1. 局部有界性
    2. 保号性
    3. 有理运算
    4. 极限与无穷小的关系
    5. 夹逼性

一般来说,在处理多元函数极限的时候,我们要先观察函数分子与分母的幂次(如果不是分式那大部分都可以直接趋向了),对应有以下这几种情况

  1. 分子 > 分母:0
  2. 分子 = 分母:不存在(任意方式趋向)
  3. 分子 < 分母: ∞ \infty

在观察后要具体求值操作时,我们通常有两个做法,一是取绝对值、二是利用夹逼准则


2. 多元函数连续性

连续概念: lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim\limits_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0) (x,y)(x0,y0)limf(x,y)=f(x0,y0)

连续函数的性质:

  1. 多元连续函数的和、差、积、商(分母非零)仍为连续函数
  2. 多元连续函数的复合函数也是连续函数
  3. 多元初等函数在其定义域内连续
  4. (最值定理):有界闭区域 D D D 上的连续函数在区域 D D D 上必能取得最值
  5. (介值定理):有界闭区域 D D D 上的连续函数在区域 D D D 上必能取得介于最大值和最小值之间的任何值

3. 偏导数

定义: f x ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = d d x f ( x , y 0 ) ∣ x = x 0 f_x(x_0,y_0)=\lim\limits_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=\frac{\mathrm{d}}{\mathrm{d}x}f(x,y_0)|_{x=x_0} fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0)=dxdf(x,y0)x=x0

二元偏导的几何意义:

z = f ( x , y ) z=f(x,y) z=f(x,y) y = y 0 y=y_0 y=y0 相交形成的曲线在点 x = x 0 x = x_0 x=x0 处的切线斜率


高阶偏导:例如 ∂ ∂ y ( ∂ z ∂ x ) = ∂ 2 z ∂ x ∂ y \frac{\partial}{\partial y}(\frac{\partial z}{\partial x})=\frac {\partial^2z}{\partial x\partial y} y(xz)=xy2z (先对 x 后对 y 求偏导)


4. 全微分

定义: Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + o ( ρ ) \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=A\Delta x+B\Delta y+o(\rho) Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o(ρ) ,则称函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处可微

  1. (可微的必要条件):若 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处可微,则其在该点处的两个偏导也都存在,且有 d z = ∂ z ∂ x d x + ∂ z ∂ y d y \mathrm{d}z=\frac{\partial z}{\partial x}\mathrm{d}x+\frac{\partial z}{\partial y}\mathrm{d}y dz=xzdx+yzdy

    基于此,判断可微的步骤可以简化为:

    • 判断两个偏导是否存在(不存在则不可微)
    • 判断 lim ⁡ ( Δ x , Δ y ) → ( 0 , 0 ) Δ z − f x ( x 0 , y 0 ) Δ x − f y ( x 0 , y 0 ) Δ y ( Δ x ) 2 + ( Δ y ) 2 \lim\limits_{(\Delta x,\Delta y)\to(0,0)}\frac{\Delta z-f_x(x_0,y_0)\Delta x - f_y(x_0,y_0)\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}} (Δx,Δy)(0,0)lim(Δx)2+(Δy)2 Δzfx(x0,y0)Δxfy(x0,y0)Δy 是否为0
  2. (可微的充分条件):若 z = f ( x , y ) z=f(x,y) z=f(x,y) 的偏导数 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处连续,则函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处可微

5. 几个概念之间的关系

一元函数

一元

多元函数

多元

(有点丑 ^ ^, 还请各位将就看吧)


二、多元函数微分法

1. 复合函数微分法

u = u ( x , y ) u=u(x,y) u=u(x,y) v = v ( x , y ) v = v(x,y) v=v(x,y) 在点 ( x , y ) (x,y) (x,y) 处对 x 对 y的偏导数存在,函数 z = f ( u , v ) z=f(u,v) z=f(u,v) 在对应点 ( u , v ) (u,v) (u,v) 处偏导数连续,那么复合函数 z = f ( u ( x , y ) , v ( x , y ) ) z = f(u(x,y), v(x,y)) z=f(u(x,y),v(x,y)) 在该点的偏导数存在 ,且有 ∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial x} xz=uzxu+vzxv ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial y} yz=uzyu+vzyv

简而言之,内层存在,外层连续 =》复合存在


全微分形式不变性
设函数 z = f ( u , v ) z=f(u,v) z=f(u,v) u = u ( x , y ) u=u(x,y) u=u(x,y) v = v ( x , y ) v=v(x,y) v=v(x,y) 都有连续的一阶偏导数,则复合函数 z = f ( u ( x , y ) , v ( x , y ) ) z=f(u(x,y), v(x,y)) z=f(u(x,y),v(x,y)) 的全微分 d z = ∂ z ∂ x d x + ∂ z ∂ y d y = ∂ z ∂ u d u + ∂ z ∂ v d v \mathrm{d}z=\frac{\partial z}{\partial x}\mathrm{d}x+\frac{\partial z}{\partial y}\mathrm{d}y=\frac{\partial z}{\partial u}\mathrm{d}u+\frac{\partial z}{\partial v}\mathrm{d}v dz=xzdx+yzdy=uzdu+vzdv


2. 隐函数微分法

  1. 由方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 确定的隐函数 y = y ( x ) y=y(x) y=y(x)

    那么对 F 对x求偏导不难得到, y ′ = − F x ′ F y ′ y'=-\frac {F'_x}{F'_y} y=FyFx

  2. 由方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 确定的隐函数 z = z ( x , y ) z=z(x,y) z=z(x,y)

    首先要确定是否有隐函数,因而引出隐函数存在定理

    (隐函数存在定理)若 F ( x , y , z ) F(x,y,z) F(x,y,z) 在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0) 的某一领域内有连续偏导数,且 F ( P ) = 0 F(P)=0 F(P)=0 F z ′ ( P ) ≠ 0 F'_z(P)\neq0 Fz(P)=0 。则方程 F = 0 F=0 F=0 在点 P P P 的某个领域内可唯一确定一个有连续偏导数的函数 z = z ( x , y ) z=z(x,y) z=z(x,y) ,并有结论

    • ∂ z ∂ x = − F x ′ F z ′ \frac{\partial z}{\partial x}=-\frac{F'_x}{F'_z} xz=FzFx
    • ∂ z ∂ y = − F y ′ F z ′ \frac{\partial z}{\partial y}=-\frac{F'_y}{F'_z} yz=FzFy

三、多元函数的极值和最值

1. 无条件极值

1) 多元泰勒

首先说明,若 f x y ( x , y ) f_{xy}(x,y) fxy(x,y) f y x ( x , y ) f_{yx}(x,y) fyx(x,y) 都在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处连续,那么 f x y ( x 0 , y 0 ) = f y x ( x 0 , y 0 ) f_{xy}(x_0,y_0)=f_{yx}(x_0,y_0) fxy(x0,y0)=fyx(x0,y0)

也就是说,对于很多顺序不同的混合偏导,如果我们发现他们都连续,就可以直接做相等处理了

而在需要多次求偏导的题目中,大部分都是初等的,因而遇到的大部分也都是连续的

笔者在教材中还看到这句话

今后除特别指出外,都假设相应阶数的混合偏导连续,从而混合偏导数与求导顺序无关



中值定理

二元函数 f f f 在凸开域 D D D 上连续,在 D D D 的所有内点都可微,那么对 D D D 内任意两点 P ( a , b ) P(a,b) P(a,b) Q ( a + h , b + k ) Q(a+h,b+k) Q(a+h,b+k) 都存在 θ \theta θ 使得

f ( a + h , b + k ) = f ( a , b ) + f x ( a + θ h , b + θ k ) + f y ( a + θ h , b + θ k ) f(a+h,b+k)=f(a,b)+f_x(a+\theta h,b+\theta k)+f_y(a+\theta h,b+\theta k) f(a+h,b+k)=f(a,b)+fx(a+θh,b+θk)+fy(a+θh,b+θk) (两个自变量的增幅比率相同

证明利用 Φ ( 1 ) − Φ ( 0 ) = Φ ′ ( θ ) \Phi(1) - \Phi(0)=\Phi'(\theta) Φ(1)Φ(0)=Φ(θ)



泰勒定理

函数 f f f 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 的某领域 U ( P 0 ) U(P_0) U(P0) 上有直到 n + 1 n+1 n+1 阶的连续偏导数,则对 U ( P 0 ) U(P_0) U(P0) 内的任一点 ( x 0 + h , y 0 + k ) (x_0+h,y_0+k) (x0+h,y0+k) 存在相应的 θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1) 使得

f ( x 0 + h , y 0 + k ) = f ( x 0 , y 0 ) + ( h ∂ ∂ x + k ∂ ∂ y ) f ( x 0 , y 0 ) + = 1 2 ! ( h ∂ ∂ x + k ∂ ∂ y ) 2 f ( x 0 , y 0 ) + ⋯ + = 1 n ! ( h ∂ ∂ x + k ∂ ∂ y ) n f ( x 0 , y 0 ) + = 1 ( n + 1 ) ! ( h ∂ ∂ x + k ∂ ∂ y ) n + 1 f ( x 0 + θ h , y 0 + θ k ) \begin{aligned} f(x_0+h,y_0+k) &= f(x_0,y_0)+(h\frac\partial{\partial x}+k\frac\partial{\partial y})f(x_0,y_0)+\\ &= \frac1{2!}(h\frac\partial{\partial x}+k\frac\partial{\partial y})^2f(x_0,y_0)+\cdots+\\ &= \frac1{n!}(h\frac\partial{\partial x}+k\frac\partial{\partial y})^nf(x_0,y_0)+\\ &= \frac1{(n+1)!}(h\frac\partial{\partial x}+k\frac\partial{\partial y})^{n+1}f(x_0+\theta h,y_0+\theta k) \end{aligned} f(x0+h,y0+k)=f(x0,y0)+(hx+ky)f(x0,y0)+=2!1(hx+ky)2f(x0,y0)++=n!1(hx+ky)nf(x0,y0)+=(n+1)!1(hx+ky)n+1f(x0+θh,y0+θk)

其中, ( h ∂ ∂ x + k ∂ ∂ y ) m f ( x 0 , y 0 ) = ∑ i = 0 m C m i ∂ m ∂ x i ∂ y m − i f ( x 0 , y 0 ) h i k m − i (h\frac\partial{\partial x}+k\frac\partial{\partial y})^mf(x_0,y_0)=\sum\limits_{i=0}^m\mathrm{C}_m^i\frac{\partial^m}{\partial x^i \partial y^{m-i}}f(x_0,y_0)h^ik^{m-i} (hx+ky)mf(x0,y0)=i=0mCmixiymimf(x0,y0)hikmi

证明思路同理与中值定理,对 Φ ( θ ) \Phi(\theta) Φ(θ) 做泰勒展开



2) 极值问题

极值点定义同理于一元,下面主要观察极值的求解条件

必要条件

函数 f f f 在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0) 存在偏导数,且在 P 0 P_0 P0 处取得极值,那么有 f x ( P 0 ) = 0 f_x(P_0)=0 fx(P0)=0 f y ( x 0 , y 0 ) = 0 f_y(x_0,y_0)=0 fy(x0,y0)=0 ,满足这个式子的点称为稳定点

  1. f f f 存在偏导数,那么极值点一定是稳定点,但是稳定点不一定都是极值点
  2. 偏导数不存在的时候有可能也能取到极值,例如 x 2 + y 2 \sqrt{x^2+y^2} x2+y2


充分条件

为了后续叙述,对于一个有二阶连续偏导数的函数 f f f 来说,记矩阵
H ( F ) ( x ) = [ ∂ 2 F ∂ x 1 2 ∂ F ∂ x 1 ∂ x 2 ⋯ ∂ F ∂ x 1 ∂ x n ∂ 2 F ∂ x 2 ∂ x 1 ∂ F ∂ x 2 2 ⋯ ∂ F ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 F ∂ x n ∂ x 1 ∂ F ∂ x n ∂ x 2 ⋯ ∂ F ∂ x n 2 ] H(F)(\boldsymbol{x})=\left[\begin{array}{cccc} \frac{\partial^{2} F}{\partial x_{1}^{2}} & \frac{\partial^{F}}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{F}}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} F}{\partial x_{2} \partial x_{1}} & \frac{\partial^{F}}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{F}}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} F}{\partial x_{n} \partial x_{1}} & \frac{\partial^{F}}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{F}}{\partial x_{n}^{2}} \end{array}\right] H(F)(x)= x122Fx2x12Fxnx12Fx1x2Fx22Fxnx2Fx1xnFx2xnFxn2F
f f f 的黑塞矩阵(Hesse)


(极值充分条件)

二元函数 f f f 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 的某领域 U ( P 0 ) U(P_0) U(P0) 上具有二阶连续偏导数,且 P 0 P_0 P0 f f f 的稳定点

  • H f ( P 0 ) H_f(P_0) Hf(P0) 是正定矩阵时, f f f P 0 P_0 P0 取极小值
  • H f ( P 0 ) H_f(P_0) Hf(P0) 是负定矩阵时, f f f P 0 P_0 P0 取极大值
  • H f ( P 0 ) H_f(P_0) Hf(P0) 是不定矩阵时, f f f P 0 P_0 P0 不取极值

那么基于线性代数知识,我们可以将结论做进一步优化,成为比较实用的形式

  1. f x x ( P 0 ) > 0 f_{xx}(P_0)>0 fxx(P0)>0 ( f 11 f 22 − f 12 2 ) ( P 0 ) > 0 (f_{11}f_{22}-f_{12}^2)(P_0)>0 (f11f22f122)(P0)>0 f f f P 0 P_0 P0 取极小值
  2. f x x ( P 0 ) < 0 f_{xx}(P_0)<0 fxx(P0)<0 ( f 11 f 22 − f 12 2 ) ( P 0 ) > 0 (f_{11}f_{22}-f_{12}^2)(P_0)>0 (f11f22f122)(P0)>0 f f f P 0 P_0 P0 取极大值
  3. ( f 11 f 22 − f 12 2 ) ( P 0 ) < 0 (f_{11}f_{22}-f_{12}^2)(P_0)<0 (f11f22f122)(P0)<0 不取极值
  4. ( f 11 f 22 − f 12 2 ) ( P 0 ) = 0 (f_{11}f_{22}-f_{12}^2)(P_0)=0 (f11f22f122)(P0)=0 无法确定

2. 条件极值

条件极值则需要在一定的约束下,对于极值点的搜索有一定的约束条件,一般有如下两种做法

  1. 条件隐化

    例如求函数 x 2 + y 2 + z 2 \sqrt{x^2+y^2+z^2} x2+y2+z2 x 2 + y 2 = z x^2+y^2=z x2+y2=z 下的极值,那么直接将条件带入进原式即可(要注意定义域)

  2. 拉格朗日乘数法



那么利用条件极值和无条件极值,我们就能对多元函数的最值问题入手了

  1. 利用无条件极值对定义域内点进行搜索
  2. 利用条件极值方法对定义域界点进行搜索

四、关于隐函数一些补充论述

隐函数在考纲中要求是不高的但是在做题中无处不在,万幸的是数分课本上对于隐函数是有一定的研究的,因而笔者想,是不是补充了解隐函数相关的一些基本知识对于解题的视角能有一些提升



隐函数在考纲中要求是不高的但是在做题中无处不在,万幸的是数分课本上对于隐函数是有一定的研究的,因而笔者想,是不是补充了解隐函数相关的一些基本知识对于解题的视角能有一些提升


1. 隐函数

定义:

对于方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 ,对于任何定义域内的 x ∈ I x\in I xI唯一确定 y ∈ J y\in J yJ 与之对应,那么称该方程确定了一个定义在 I I I 上,值域含于 J J J 的隐函数(只有在不产生误解的情况下,其取值范围可以不用指出)



隐函数存在性条件分析

y = f ( x ) y=f(x) y=f(x) 可以看作是 z = F ( x , y ) z=F(x,y) z=F(x,y) 与坐标平面 z = 0 z=0 z=0 的交线,故隐函数存在,交线至少存在

其次,若 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 若能够在点 P 0 P_0 P0 处确定一个连续函数,那么表现为上述交集是一条通过点 P 0 P_0 P0 的连续曲线段

为此我们假设 F F F 在该点可微,则可使得 P 0 P_0 P0 点的切平面存在,并满足与 z = 0 z=0 z=0 形成交线的要求

若进一步假设 f ( x ) f(x) f(x) 可微,那么在 P 0 P_0 P0 处对 x x x 求导我们可以得到以下结论

F x ( P 0 ) + F y ( P 0 ) ⋅ d y d x ∣ x = x 0 = 0 F_x(P_0)+F_y(P_0)\cdot\frac{\mathrm{d}y}{\mathrm{d}x}|_{x=x_0}=0 Fx(P0)+Fy(P0)dxdyx=x0=0 ,其常见形式为 y ′ ( P 0 ) = − F x ( P 0 ) F y ( P 0 ) y'(P_0)=-\frac{F_x(P_0)}{F_y(P_0)} y(P0)=Fy(P0)Fx(P0)



基于上述分析,下面给出隐函数定理(仅基于了解范畴因此叙述极为简化)

F ( x , y ) F(x,y) F(x,y) 满足

( i )    F x ( x , y ) , F y ( x , y ) 连续 (\mathrm{i})\quad \ \ F_x(x,y),F_y(x,y)连续 (i)  Fx(x,y),Fy(x,y)连续
( i i )   F ( x 0 , y 0 ) = 0 ( 初始条件 ) (\mathrm{ii})\quad \ F(x_0,y_0)=0(初始条件) (ii) F(x0,y0)=0(初始条件)
( i i i ) F y ( x 0 , y 0 ) ≠ 0 (\mathrm{iii})\quad F_y(x_0,y_0)\neq0 (iii)Fy(x0,y0)=0

有结论

1 ′ 方程 F ( x , y ) = 0 ,唯一确定了隐函数 y = f ( x ) 1'\quad 方程 F(x,y)=0,唯一确定了隐函数y=f(x) 1方程F(x,y)=0,唯一确定了隐函数y=f(x)

2 ′ f ( x ) 连续 2'\quad f(x)连续 2f(x)连续

3 ′ f 有连续偏导数且  f ′ = − F x F y 3'\quad f有连续偏导数且\ f'=-\frac{F_x}{F_y} 3f有连续偏导数且 f=FyFx

上述定理给出的是二元形式,三元至 n n n 元以此类推即可



那么对于隐函数的极值问题,我们就有了以下思路

  1. 求得 y ′ = 0 y'=0 y=0 的驻点 A,即方程组 F = 0 , F x = 0 F=0,F_x=0 F=0,Fx=0 的解
  2. 由于 F x = 0 F_x=0 Fx=0 所以二阶导简化为 y ′ ′ = − F x x F y y''=-\frac{F_{xx}}{F_y} y′′=FyFxx
  3. 基于二阶导的正负判断是极大还是极小值

2. 隐函数组

同理于第一节的内容,这里将方程改写成方程组的形式,即有
{ F ( x , y , u , v ) = 0 G ( x , y , u , v ) = 0 \left \{ \begin{aligned} F(x,y,u,v)=0 \\ G(x,y,u,v)=0 \end{aligned} \right. {F(x,y,u,v)=0G(x,y,u,v)=0
对于该方程组,其确定的隐函数组为
{ u = f ( x , y ) v = g ( x , y ) \left\{ \begin{aligned} u=f(x,y) \\ v=g(x,y) \end{aligned} \right. {u=f(x,y)v=g(x,y)



隐含数组定理

对方程组 (3) 分别对 x 和 y 求偏导得到
{ F x + F u u x + F v v x = 0 G x + G u u x + G v v x = 0 \left\{ \begin{aligned} &F_x+F_uu_x+F_vv_x=0 \\ &G_x+G_uu_x+G_vv_x=0 \\ \end{aligned} \right. {Fx+Fuux+Fvvx=0Gx+Guux+Gvvx=0

{ F y + F u u y + F v v y = 0 G y + G u u y + G v v y = 0 \left\{ \begin{aligned} &F_y+F_uu_y+F_vv_y=0 \\ &G_y+G_uu_y+G_vv_y=0 \end{aligned} \right. {Fy+Fuuy+Fvvy=0Gy+Guuy+Gvvy=0

由线性代数知识我们知道,要想解出 u x u_x ux v x v_x vx u y u_y uy v y v_y vy 充分条件是
∣ F u F v G u G v ∣ ≠ 0 \left | \begin{matrix} F_u &F_v \\ G_u &G_v \\ \end{matrix} \right | \neq 0 FuGuFvGv =0
记上面的行列式为 F F F G G G 关于变量 u u u v v v 的雅可比行列式,记作 J = ∂ ( F , G ) ∂ ( u , v ) J=\frac {\partial(F,G)}{\partial(u,v)} J=(u,v)(F,G)

( i )    F 与 G 连续 (\mathrm{i})\quad \ \ F与G连续 (i)  FG连续
( i i )   F ( P 0 ) = G ( P 0 ) = 0 (\mathrm{ii})\quad \ F(P_0)=G(P_0)=0 (ii) F(P0)=G(P0)=0
( i i i ) F , G 具有一阶连续偏导数 (\mathrm{iii})\quad F,G具有一阶连续偏导数 (iii)F,G具有一阶连续偏导数
( i v ) J = ∂ ( F , G ) ∂ ( u , v ) 在点 P 0 不为 0 (\mathrm{iv})\quad J=\frac {\partial(F,G)}{\partial(u,v)}在点P_0不为0 (iv)J=(u,v)(F,G)在点P0不为0

1 ′ 方程组唯一确定了两个二元函数 u = f ( x , y ) 和 v = g ( x , y ) 1'\quad 方程组唯一确定了两个二元函数 u=f(x,y) 和 v=g(x,y) 1方程组唯一确定了两个二元函数u=f(x,y)v=g(x,y)

2 ′ f 和 g 连续 2'\quad f和g连续 2fg连续

3 ′ ∂ u ∂ x = − 1 J ∂ ( F , G ) ∂ ( x , v ) ,其他同理 3' \quad \frac{\partial u}{\partial x}=-\frac 1J\frac{\partial(F,G)}{\partial(x,v)},其他同理 3xu=J1(x,v)(F,G),其他同理


3. 自变量变换

自变量变换笔者认为还是一个较为冷门的考点,之前在1800上见到过,只不过自己的做法太过复杂了,下面演示一个做法简洁一些的例题


ϕ \phi ϕ 为二元连续可微函数,对于函数组 u = x + a t , v = x − a t u=x+at,v=x-at u=x+at,v=xat 试把弦振动方程 a 2 ∂ 2 ϕ ∂ x 2 = ∂ 2 ϕ ∂ t 2 ( a > 0 ) a^2\frac{\partial^2\phi}{\partial x^2}=\frac{\partial^2\phi}{\partial t^2}(a>0) a2x22ϕ=t22ϕ(a>0) 改写成以 u u u v v v 为自变量的形式

解:

首先由 ∂ ( u , v ) ∂ ( x , t ) = − 2 a ≠ 0 \frac{\partial(u,v)}{\partial(x,t)}=-2a\neq0 (x,t)(u,v)=2a=0 ,因此存在逆变换

又有 d u = u x d x + u t d t = d x + a d t , d v = d x − a d t \mathrm{d}u=u_x\mathrm{d}x+u_t\mathrm{d}t=\mathrm{d}x+a\mathrm{d}t,\mathrm{d}v=\mathrm{d}x-a\mathrm{d}t du=uxdx+utdt=dx+adtdv=dxadt

那么由微分形式不变性,有 d ϕ = ϕ u d u + ϕ v d v = ( ϕ u + ϕ v ) d x + a ( ϕ u − ϕ v ) d t \mathrm{d}\phi=\phi_u\mathrm{d}u+\phi_v\mathrm{d}v=(\phi_u+\phi_v)\mathrm{d}x+a(\phi_u-\phi_v)\mathrm{d}t dϕ=ϕudu+ϕvdv=(ϕu+ϕv)dx+a(ϕuϕv)dt

所以 ϕ x = ϕ u + ϕ v , ϕ t = a ( ϕ u − ϕ v ) \phi_x=\phi_u+\phi_v,\phi_t=a(\phi_u-\phi_v) ϕx=ϕu+ϕvϕt=a(ϕuϕv)

那么继续以 u u u v v v 为自变量求导有 ϕ x x = ϕ u u + 2 ϕ u v + ϕ v v , ϕ u = a 2 ( ϕ x x − 2 ϕ u v + ϕ v v ) \phi_{xx}=\phi_{uu}+2\phi_{uv}+\phi_{vv},\phi_u=a^2(\phi_{xx}-2\phi_{uv}+\phi_{vv}) ϕxx=ϕuu+2ϕuv+ϕvv,ϕu=a2(ϕxx2ϕuv+ϕvv)

整理得新的振动方程为 ∂ 2 ϕ ∂ u ∂ v = 0 \frac{\partial^2\phi}{\partial u\partial v}=0 uv2ϕ=0

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szfmsmdx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值