【FLUX】目前最强的文生图模型?!FLUX完全解读!附体验地址

几天前,Poe AI新增了一个文生图的模型,在给用户发放的邮件通知中,Poe形容这个文生图模型是“the best image generator”,它便是FLUX

说起FLUX模型,可能很多小伙伴都没听说过。这并不奇怪。FLUX是由Black Forest Labs黑森林实验室)推出的一款最新的文本生成图像模型。而Black Forest Labs今年8月1日,也就是大约两周前,才在官网宣布了Black Forest Labs的启动。

Black Forest Labs是由Stable Diffusion原班人马创立的新公司,专注于开发先进的生成式深度学习模型,并致力于建立新的行业标准。该公司由Robin Rombach领导,他是Stable Diffusion的作者之一。Black Forest Labs的核心使命是通过开发强大且易于访问的生成式AI工具,使得高质量的生成式AI技术普及化。Black Forest Labs认为开放的访问权限和广泛的研究社区合作对AI技术的负责任发展至关重要。这一理念体现在他们发布的模型中,这些开源模型供非商业用途使用,同时他们也提供适用于商业应用的更强大版本。

Black Forest Labs公布了它在生成式AI领域取得的一系列技术突破。

  1. VQGAN技术:这是一种结合了生成对抗网络(GAN)和向量量化变分自编码器(VQ-VAE)的创新模型,它能够生成高清晰度的图像。

  2. 潜在扩散模型:这些模型通过在潜在空间中进行操作,显著提升了图像生成的效率和质量。

  3. 稳定扩散模型:以其出色的效率而闻名,能够在较低的计算成本下生成高质量的图像。

在融资和未来发展方面,Black Forest Labs于本月(2024年8月)成功完成了3100万美元的种子轮融资,由Andreessen Horowitz领投,其他知名投资者如Brendan Iribe、Michael Ovitz、Garry Tan、Timo Aila和Vladlen Koltun也参与了投资。这笔资金将助力实验室在全球范围内推广其尖端AI技术。展望未来,Black Forest Labs计划将其技术扩展到文本到视频生成领域,利用其在扩散模型方面的专长,开发能够快速、精确地创建和编辑视频的工具。这一发展将进一步加强Black Forest Labs在生成式媒体技术领域的领先地位。

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
关于FLUX.1模型 ----------

FLUX模型全名为FLUX.1,是Black Forest Labs最近推出的文本生成图像的AI模型。

FLUX.1模型包含三个版本:FLUX.1 [pro]、FLUX.1 [dev]和FLUX.1 [schnell],分别针对不同的使用场景和需求。其中,FLUX.1 [pro]是闭源模型,提供最佳性能,而FLUX.1 [dev]和[schnell]则是开源模型,[dev] 版本不可商用,[schnell]版本则专为本地开发和个人使用设计,具有最快的生成速度和最小的内存占用。

  1. FLUX.1 [pro]: 这是FLUX.1的最强版本,专为商业用途设计,提供最先进的图像生成性能,包括顶级的提示词遵循、视觉质量、图像细节和输出多样性。目前可以通过API获取FLUX.1 [pro]的访问权限。

  2. FLUX.1 [dev]: FLUX.1 [dev]是一个开源的引导蒸馏模型,适用于非商业应用。直接从FLUX.1 [pro]蒸馏而来,FLUX.1 [dev]获得了类似的质量和提示词遵循能力,同时比同等大小的标准模型更高效。

  3. FLUX.1 [schnell]: 响应速度最快的模型,专为本地开发和个人使用量身定制。FLUX.1 [schnell]可在Apache 2.0许可下公开获取。与 FLUX.1 [dev]类似,权重可在Hugging Face上获取,代码可以在GitHub和HuggingFace的Diffusers中找到。

目前发布的FLUX.1模型均采用了一种创新的混合架构,融合了多模态处理能力和并行扩散机制的Transformer技术,并将其扩展至高达120亿个参数。这些模型在训练生成模型的方法上采用了流匹配技术,这种方法不仅通用性强,而且概念简洁,特别适用于包括扩散过程在内的各种情况。

根据Black Forest Labs官方的测试对比图,FLUX.1 [pro]和[dev]版本在多方面超越了市场上的主流文生图模型,包括Midjourney v6.0、DALL·E 3 (HD)和SD3-Ultra。这些方面包括视觉质量、对提示词的精准遵循、尺寸和比例的多样性、排版能力以及输出的多样性。

FLUX.1模型生成图片样例

FLUX.1模型体验地址


关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### Flux框架在文本到图像生成工作流中的应用 对于文本到图像的生成流程而言,Flux作为一种函数式反应编程库,在构建高效的工作流方面具有独特的优势。然而,具体提及到Flux用于文本转图片这一特定场景时,并未直接从所提供的参考资料中找到对应描述[^1]。 尽管如此,基于对Flux的理解以及其在其他领域内的广泛应用模式可以推测,在设计这样一个转换过程时,可能会采用如下方法: #### 数据流动与处理管道建立 通过定义一系列的操作符来创建一个数据处理管道,这些操作符能够接收输入(即文本),经过多阶段变换最终产出期望的结果——图像文件。此过程中每一个环节都可以被看作是一个独立的任务节点,它们之间相互连接形成完整的流水线结构。 ```julia using Flux # 定义模型架构 model = Chain( Dense(784, 256, relu), Dense(256, 10), softmax) # 假设有一个函数可以从文本映射至向量空间表示 text_to_vector(text::String)::Vector{Float32} = ... # 将上述两个部分结合起来完成整个转化逻辑 function generate_image_from_text(model, text) vector_representation = text_to_vector(text) prediction = model(vector_representation)' end ``` 这里展示了一个简化版的例子,实际应用场景下可能还需要考虑更多因素比如预训练好的编码器解码器网络、复杂的损失函数计算等。 由于资料并未提供有关于`deck.gl geospatial charts.` 和 `Superset` 的信息如何关联于此话题,这部分内容在此不做讨论[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值