浅读CVPR论文A ConvNet for the 2020s

论文链接这篇文章的关键点在于,测试了纯ConvNet可以达到的极限,并发现了几个有助于性能差异的关键组件。提出了一种纯ConvNet模型,称为ConvNeXt,它可以与transformer在准确性和可扩展性方面相媲美,同时保持标准ConvNet的简单和高效。


文章目的

计算机视觉任务的性能受到深度学习模型的改进,特别是transformer模型的出现。transformer模型的出现使得计算机视觉任务的性能得到了显著提升,但是它们也有一些缺点,如参数量大、计算量大、训练时间长等。因此,文章的目的是探索纯ConvNet模型的潜力,以提高计算机视觉任务的性能。

文章主题

这篇文章探讨了ConvNeXt,一种纯卷积神经网络模型,它可以与Swin Transformers在视觉识别任务上相媲美,同时保留标准卷积网络的简单性和效率。文章还提供了ImageNet-1K训练和ImageNet-22K预训练设置,并且提供了ImageNet-1K的微调设置。文章还提出了一系列模型设计决策,如宏观设计,ResNeXt,反向瓶颈,大核尺寸和各种层次微设计,以及使用GELU替换ReLU,以及使用单个GELU激活,替换BatchNorm和使用单独的下

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ʚ๑Brave ิboy๑ɞ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值