论文链接这篇文章的关键点在于,测试了纯ConvNet可以达到的极限,并发现了几个有助于性能差异的关键组件。提出了一种纯ConvNet模型,称为ConvNeXt,它可以与transformer在准确性和可扩展性方面相媲美,同时保持标准ConvNet的简单和高效。
文章目的
计算机视觉任务的性能受到深度学习模型的改进,特别是transformer模型的出现。transformer模型的出现使得计算机视觉任务的性能得到了显著提升,但是它们也有一些缺点,如参数量大、计算量大、训练时间长等。因此,文章的目的是探索纯ConvNet模型的潜力,以提高计算机视觉任务的性能。
文章主题
这篇文章探讨了ConvNeXt,一种纯卷积神经网络模型,它可以与Swin Transformers在视觉识别任务上相媲美,同时保留标准卷积网络的简单性和效率。文章还提供了ImageNet-1K训练和ImageNet-22K预训练设置,并且提供了ImageNet-1K的微调设置。文章还提出了一系列模型设计决策,如宏观设计,ResNeXt,反向瓶颈,大核尺寸和各种层次微设计,以及使用GELU替换ReLU,以及使用单个GELU激活,替换BatchNorm和使用单独的下