LM04丨震荡算法在趋势中的应用

本文介绍了震荡算法动态动量指数在量化交易策略中的应用,源于Tushar Chande和Stanley Kroll的策略,通过计算涨跌值比例进行加权,形成震荡指标。策略在不同品种上表现不一,适用于捕捉动量并在大势中寻找入场点。文中还提供了策略代码和绩效分析,强调了结合跨日周期均线过滤的重要性。
摘要由CSDN通过智能技术生成

 

致力于量化策略开发,高质量社群,交易思路分享等相关内容

 

大家好,我是Le Chiffre。

今天为大家带来第4期异质化策略——震荡算法的动量趋势使用。我们按照往常惯例逐一介绍策略背景、策略绩效与策略部分代码演示。

策略背景

该策略背景来源于Tushar Chande(图莎尔·钱德)和Stanley Kroll(斯坦利·克罗)于上世纪90年代开发的dynamic momentum index(动态动量指数)改编而来。该震荡指标内的一些算法逻辑类似于慕总的SF21,采用一定周期内涨跌值统计,并针对差值进行一定周期占比计算,经过处理后,变为计算最终震荡算法中的对应加权因子。如下图所示:

该算法指标开发并测量价格动量,就像相对强弱指标(RSI)一样。震荡器的范围介于-100和+100之间,其基值为0。

TBQ复现可视化如下图所示:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值