提示工程(Prompt Engineering)
提示工程不仅仅是关于设计和研发提示词,还包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着重要作用。提示工程可以赋能大语言模型,比如借助专业领域知识和外部工具来增强大语言模型能力(例如RAG)。
一、链式思考(CoT)
链式思考是提示通过中间推理步骤来实现复杂的推理能力,以获得更好的更正确的推理结果。
思维链的主要思想是通过向大语言模型展示一些少量的 examples,在样例中解释推理过程,大语言模型在回答提示时也会显示推理过程。这种推理的解释往往会引导出更准确的结果。
论文地址:https://arxiv.org/pdf/2005.14165
二、零样本思维链(Zero-shot-CoT)
在问题的结尾附加“Let’s think step by step”这几个词,大语言模型能够生成一个回答问题的思维链。
Zero-shot-CoT 是一个 pipeline。也就是说“Let’s think step by step”这句话,只是通过这个 prompt 让LLM 尽可能生成一些思考过程,然后再将生成的 rationale(理由) 和 question 拼在一起,重新配合一个answer 指向的 prompt 如“The answer is ”来激励模型生成答案。
三、自动思维链(Auto-CoT)
Auto-CoT 主要由两个阶段组成:
-
• 阶段1:问题聚类:将给定问题划分为几个聚类
-
• 阶段2:演示抽样:从每组数组中选择一个具有代表性的问题,并使用带有简单启发式的 Zero-Shot-CoT 生成其推理链
四、CBR模式(Case-Base Reasoning)提升任务成功率
核心思想:他山之石,可以攻玉。利用以往解决类似问题的经验来解决新问题。
-
-
• 首先检索出与任务相关的人类专家知识,并获取对应详细的案例。
-
• 根据详细案例,进行新的任务推理。
基本结构
[任务]
{}
[解决方案]
{}
现在请根据上述文本洞察解决以下任务。
[任务]
{}
role:你是一个客户端高级测试工程师,能够对客户端UI界面的各种问题进行判断,这里是一些发生过问题页面的例子,能够帮你完成页面显示问题的分析任务:
[任务]
你是一个客户端高级测试工程师,下面是之前发生过UI问题的例子描述,请按图片顺序进行分析。
内容要求:
1.分析传入的图片,识别出页面中所有的控件和文本,忽略顶部系统通知栏和底部菜单栏。
2.对每一个控件元素和文本元素都进行判断(顶部的通知栏和底部的菜单栏不需要参与分析),分析元素本身的问题,一般存在的问题是缺失、不完整、展示不全、颜色过浅、没有单位、小数点错乱等,
3.基于整个UI界面的布局进行分析,一般存在的问题是按钮未对齐高度不一致、元素位置错乱、元素之间遮挡、整体布局错乱等
4.按顺序分析每张图片,后一张图片的分析需要借助之前的图片分析结果,很有可能出现类似的问题,保证你的判断结果准确,并且给出对应的判断理由,当判断为符合时,需要说明符合的校验条件是什么,当判断为不符合时,需要说明不符合的校验条件是什么。如果无法从给定的图片中判断出结果,判断结果为不符合
5.你需要在判断结果中,输出以下信息:
a.判断结果:
b.判断理由:
格式要求:
请按照如下json格式输出,reason使用中文,不要输出其他无关内容:
{
"result":"pass/fail/error",
"reason":"...."
}
如果没有问题,result=pass,有问题result=fail,如果无法进行准确判断或者依据不足,则result=error
6.请分步骤思考这个问题
7.你要对输出结果认真检查,对你的答案负责,其中大概率不会发生UI问题,所以一定要仔细判断,给出足够可信赖的判断依据,如果如法判断,就将结果置为error,只需要输出一条结果
[解决方案]
第一张图片分析后组合成JSON结果输出
{
"result":"fail",
"reason":"识别到右下角两个蓝色按钮,都存在问题,第一个按钮的红色标签没有显示完全,第二个按钮的文本存在缺失问题,没有下发券后价"
}
现在请根据上述文本洞察解决以下UI问题分析任务。
[任务]你需要分析的图片是输入图片的最后一张,需要借助之前的图片分析结果,很有可能出现类似的问题,保证你的判断结果准确,并且给出对应的判断理由,只需要给出最后一张图片的分析结果,
格式要求:
请按照如下json格式输出,reason使用中文,不要输出其他无关内容:
{
"result":"pass/fail/error",
"reason":"...."
}
如果没有问题,result=pass,有问题result=fail,如果无法进行准确判断或者依据不足,则result=error
特点
CBR模式基本还是一个方法和策略,需要配合其他prompt工程一起使用。
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
5. 大模型面试题
面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费
】
如有侵权,请联系删除。