Chain-of-thought prompting(链式思考提示)

本文探讨了AI大模型中“涌现”现象的重要性,特别是逻辑推理能力的提升,通过思维链(CoT)技术实现。文章介绍了链式思考提示的应用,它鼓励模型展示推理过程,提升模型的可解释性和准确性。通过分解问题和模拟人类思维,CoT在数学问题、逻辑推理任务中展现出显著效果,推动了AI的智能和可靠性提升。
摘要由CSDN通过智能技术生成

1.大模型“涌现”的思维链

        最近 AI 大厂的开发人员和高校的 NLP 研究人员,都在琢磨,怎么让大模型“涌现”。

        所谓“涌现”,在大模型领域指的是当模型突破某个规模时,性能显著提升,表现出让人惊艳、意想不到的能力。比如语言理解能力、生成能力、逻辑推理能力等。一般来说,模型在 100亿(10B) 到 1000亿(100B) 参数区间,可能产生能力涌现。

       但靠砸钱和运气,只一味把模型做的大大大,也未必能让AI“显灵”。

       强大的逻辑推理是大语言模型“智能涌现”出的核心能力之一,好像AI有了人的意识一样。而推理能力的关键,在于一个技术——思维链(Chain of Thought,CoT)。

       大家如果看过类 GPT 应用的翻车问题,会发现大多都是数学算术题、逻辑思考题等,这类需要精确推理的问题,而这正是思维链能够重点解决的。现在训练大语言模型的企业和机构很多,但能够训练出思维链并应用的很少。

       换句话说,只有解锁了思维链技术,大语言模型才有可能“涌现”,才能在“大炼模型”的竞争中具备能力优势。下面具体介绍一下思维链——CoT。

2.思维链

       Chain-of-thought prompting(链式思考提示)是一种新兴的基于语言模型的技术应用方式,尤其在大规模预训练模型如GPT-3及其后续版本中得到了广泛应用。这一方法鼓励模型不仅生成最终的答案,而且逐步展示出它是如何推理并得出结论的。在执行复杂问题求解时,模型会生成一系列中间步骤,每个步骤都可以视为解答问题的一个逻辑片段或计算过程的一部分。

       具体来说,链式思考提示的方法通常涉及向模型提出问题,并要求它不仅提供答案,还要给出详细的解题过程,就像一个人在纸上一步步演算一样。这样做的好处包括:

  1. 提升可解释性:模型的输出不再是“黑箱”式的直接答案,而是展示了解决问题的完整思维链条,有助于理解模型的决策依据。
  2. 改善准确性:通过逐步推理,模型有可能发现并纠正自己在初步推理阶段的错误,从而提高最终答案的正确率。
  3. 泛化能力增强:当模型学习到如何分解和解决复杂问题时,它可能在遇到未曾见过但结构相似的问题时,运用相同的推理策略来找到解决方案。

       链式思考提示是对现有大模型技术的重要补充,通过模拟人类解决问题时的思维方式,有助于提升模型在各种认知任务上的表现与可靠性。

3.思维链的工作方式

       链式思考提示的核心价值在于让模型在回答问题时不仅仅依赖于对训练数据中的模式匹配,而是更多地体现了从基础概念出发、逐步构建和验证假设的思维过程,这是人类在解决问题时常采用的方式。链式思考提示的关键优势,这种技术旨在促进预训练语言模型在解答问题时模拟人类的逻辑推理过程,而非简单地检索或映射训练集中相似问题的答案。具体来说:

  1. 基于基础概念:COT鼓励模型从基础知识和基本原理出发来构建答案,而不是直接记忆存储的答案片段。

  2. 逐步推理:模型在解答过程中会逐步展示其推理链条,每一步都建立在前一步的基础之上,形成一个连贯而透明的逻辑流程。

  3. 假设验证:类似于人类思考问题时会提出假设然后验证它们的过程,模型也会通过演绎和归纳的方式来验证其推理路径的有效性。

  4. 提高泛化能力:通过链式思考,模型能够更好地处理新颖或复杂的问题,因为它能根据问题的具体情况动态生成解决方案,而非仅限于复现已知的模式。

  5. 增强可解释性:最终用户的获益还包括能够清楚地看到模型如何从初始问题到达最终答案,提高了模型决策的可解释性和可信度。

       链式思考提示为大模型带来了一种更为智能和灵活的解题策略,显著提升了其在各类认知任务中的表现和可靠性,并朝着实现真正意义上的“理解”问题迈进了一大步。

3.CoT激励模型展示其内部的思维运作机制

       这种方法鼓励模型不仅生成答案,还详述其背后的逻辑推理路径,这包括但不限于列举假设、推导步骤、解析问题组成部分以及必要时引入辅助概念等。链式思考提示方法确实激励模型超越直接输出答案这一层次,转而展示其内部的思维运作机制。通过要求模型详细叙述其推理路径,它不仅要清晰表达出每个结论的理由,还要逐步展开这些理由是如何从原始问题及相关的先验知识中得出的。举例来说:

  • 在解决数学问题时,模型可能会列出关键的公式、定义和定理作为推理依据,并逐步展示如何应用这些原理到具体情境中;
  • 在解答逻辑谜题时,模型可能首先识别并明确陈述各个条件,然后逐步探索不同假设的可能性,并排除矛盾或无效的选项,直至找到合理解答;
  • 在处理复杂问题时,模型可能需要分解问题,分步骤解决各部分,同时可能引入辅助概念或类比来帮助理解和解释问题。

       这样做的好处在于,用户不仅可以得到最终答案,更能洞察模型如何运用知识体系来分析问题,从而增加信任度,同时也为模型自身的学习和发展提供了更丰富和深入的反馈。

4.CoT的核心价值

        对于复杂的数学问题、逻辑推理或者需要多步操作的任务而言,链式思考提示尤为有效。通过这种方式,模型能够更好地理解和适应新的、未见的复杂情境,同时增强了用户对模型输出的信任度,因为用户可以看到模型是如何一步步接近并得出结论的。此外,该方法还能帮助研究人员更深入地理解模型的内在运作机制,为未来的优化和发展提供了有价值的反馈信息。

       链式思考提示在解决复杂问题时的核心价值体现在以下几个方面:

  1. 透明性与可解释性

    模型通过逐步展示每一步推理过程,提高了答案的透明度,用户可以跟随模型的思路,理解为何某个解决方案是从给定问题出发的合理演化结果。
  2. 逻辑严谨性

    • 对于数学问题,模型需列举假设、引用法则、执行计算步骤,确保整个推理链条无逻辑断裂点。
    • 对于逻辑推理,模型会列出前提条件、建立逻辑联系,通过演绎或归纳的方式推出结论。
  3. 适应性和泛化能力

    通过细致的链式思考,模型能够灵活地应对各种变体和未曾遇到过的复杂情况,因为它展示了独立解决问题的能力,而非单纯依赖模式匹配或记忆已有案例。
  4. 教育与指导作用

    对于学习者来说,这种详细的解题过程具有很高的教育价值,有助于他们掌握解决问题的方法论,提高自我解决问题的能力
  5. 增强信任与接受度

    当用户看到模型如同人类专家那样一步步有条不紊地分析问题,他们会更容易接纳模型给出的答案,提升对AI系统的信任感。

       因此,在设计和训练AI模型时,鼓励其采用链式思考方式不仅能优化用户体验,也有助于构建更为智能、可靠和易被用户理解的人工智能系统。

5.CoT带来的宝贵洞见

       链式思考提示不仅对终端用户有显著的帮助,也为研究人员带来了宝贵的洞见。通过观察模型在使用链式思考提示时如何逐步构建和验证其答案,研究人员能够完成以下的一些工作:

  1. 诊断模型弱点:识别模型在哪些推理步骤中出现失误或困惑,以便针对性地优化模型结构或训练策略。

  2. 了解模型知识表示:探究模型如何组织、存储和运用已学习到的知识,这对于改进模型的知识整合与抽象能力至关重要。

  3. 启发模型改进方案:基于模型在解决复杂问题时展现的思维过程,研究人员可以构思新的模型架构、训练方法或提示设计,以增强模型的泛化能力和鲁棒性。

  4. 提升模型可解释性:提供一种途径,让研究人员能够以更直观的方式解释模型的决策过程,从而满足监管、伦理和公平性等方面的要求。

       因此,链式思考提示不仅是提高模型性能和用户信任度的有效手段,更是推动AI模型及相关研究向前发展的重要工具和方法。

6.CoT的概念性代码

链式思考提示(Chain-of-Thought, COT)的代码实现并没有一个固定的模板,因为它依赖于特定的问题和所使用的AI模型。不过,我可以提供一个简化的示例,展示如何在一个简单的问答系统中实现COT的概念。这个示例将使用Python语言,并假设我们有一个基本的问答模型。

请注意,这个示例是高度简化的,仅用于说明COT的概念,并不代表实际的AI系统。

 

class SimpleQAModel:
    def __init__(self):
        # 初始化问答模型,这里只是一个示例
        pass

    def answer_question(self, question):
        # 根据问题返回答案
        # 这里只是一个示例,实际的模型会进行复杂的推理
        return "这是一个示例答案"

    def explain_answer(self, question):
        # 提供答案的解释或推理过程
        # 这里只是一个示例,实际的模型会进行更复杂的推理
        return "这是对答案的解释"

# 模拟问答过程
def ask_question(model, question):
    print(f"问: {question}")
    answer = model.answer_question(question)
    explanation = model.explain_answer(question)
    print(f"答: {answer}")
    print(f"解释: {explanation}\n")

# 创建问答模型实例
qa_model = SimpleQAModel()

# 模拟用户提问
questions = [
    “为什么天空是蓝色的?”,
    “光合作用是如何进行的?”
]

for q in questions:
    ask_question(qa_model, q)

       在实际的AI系统中,answer_questionexplain_answer 方法会涉及复杂的算法和模型推理,可能包括自然语言理解、知识表示、推理引擎等技术。

explain_answer 方法的实现

在实际的AI系统中,explain_answer 方法的实现会依赖于模型的架构和训练方式。由于AI模型通常是一个黑箱,直接从模型中得到解释性的答案可能很困难。然而,有一些技术可以帮助我们实现这一功能,以下是一些可能的方法:

  1. 规则基础系统:如果模型是基于一组规则构建的,那么解释答案可能仅仅是展示这些规则如何应用于特定问题。

  2. 决策树或决策图:对于决策树或决策图模型,解释可以是展示问题是如何通过树或图的路径来得到答案的。

  3. 注意力机制:在一些深度学习模型中,如Transformer架构,注意力机制可以被用来解释模型的决策过程。注意力权重可以显示模型在做出预测时更加关注输入的哪些部分。

  4. 反向传播:通过反向传播算法,可以识别出对模型输出影响最大的输入特征,这可以作为解释模型决策的一种方式。

  5. 模型可视化:对于某些类型的模型,如卷积神经网络(CNNs),可视化中间层的激活可以提供对模型如何识别输入特征的洞察。

  6. 后处理解释:在模型给出答案后,使用后处理步骤生成解释。例如,如果模型预测了一个数学问题的解答,后处理步骤可以生成解决该问题的逐步步骤。

  7. 可解释的AI(XAI)技术:使用XAI技术,如LIME(局部可解释模型-不透明)或SHAP(SHapley Additive exPlanations),可以为任何模型提供解释。

下面是一个简化的Python伪代码示例,展示了如何实现一个简单的explain_answer方法,该方法基于硬编码的规则来解释答案:

class SimpleQAModel:
    # ... 其他方法 ...

    def explain_answer(self, question, answer):
        # 一个简单的基于规则的解释系统
        if "天空为什么是蓝色的" in question:
            return "天空呈现蓝色是因为大气中的分子和小粒子会散射阳光中的蓝色波长比其他颜色更多。"
        elif "光合作用" in question:
            return "光合作用是植物、藻类和某些细菌使用阳光能量将水和二氧化碳转化为葡萄糖和氧气的过程。"
        # 添加更多的规则来解释不同类型的问题
        else:
            return "没有可用的解释。"

# 创建问答模型实例
qa_model = SimpleQAModel()

# 模拟用户提问并获取解释
question = "为什么天空是蓝色的?"
explanation = qa_model.explain_answer(question, "这是一个示例答案")
print(f"问题: {question}")
print(f"解释: {explanation}")

       在实际应用中,explain_answer 方法的实现将更加复杂,并且需要根据所使用的具体AI模型和技术进行定制。此外,生成的解释可能需要满足可解释性、准确性和用户理解性等要求。

       对于更高级的实现,你可能需要使用机器学习库(如TensorFlow或PyTorch)来训练一个深度学习模型,使其能够理解自然语言并进行复杂的推理。链式思考提示可以通过在训练数据中包含问题的解决步骤来实现,这样模型就可以学习如何逐步推理。

       在实际应用中,COT提示的实现会依赖于模型架构、训练数据、任务类型等多种因素,因此需要根据具体情况进行定制化开发。

7.CoT的数学语言描述

链式思考提示(Chain-of-Thought, COT)在数学问题解决中可以被看作是一种将问题分解为一系列更小、更易于管理的子问题的方法。在数学描述中,这可以被视为一个序列决策过程或优化问题,其中每一步都依赖于前一步的结果。

让我们考虑一个简化的数学问题解决场景,比如解决一个含有未知数的方程。链式思考提示可以表示为以下步骤:

  1. 定义问题:首先定义问题,比如求解方程 \(x^2 - 5x + 6 = 0\)。

  2. 分解问题:将问题分解为一系列的子问题。对于上述方程,子问题可能包括:

    • 识别方程类型(二次方程)
    • 尝试因式分解
    • 如果不能因式分解,使用求根公式
  3. 执行步骤:按照逻辑顺序执行每个子问题的解决步骤。例如:

    • 因式分解尝试:\(x^2 - 5x + 6 = (x - 2)(x - 3)\)
    • 求解 𝑥x 的值:\(x - 2 = 0\) 或 \(x - 3 = 0\)
  4. 得出结论:根据执行的步骤得出最终答案,即 \(x = 2\) 或 \(x = 3\)。

在数学描述中,链式思考提示可以被看作是一个决策序列,每一步都是基于前一步的输出。

如果我们用 \(S\) 表示步骤,\(I\) 表示输入,\(O\) 表示输出,那么链式思考提示可以表示为:

\[ S_1(I) \rightarrow O_1 \]
\[ S_2(O_1) \rightarrow O_2 \]
\[ \vdots \]
\[ S_n(O_{n-1}) \rightarrow O_n \]

其中,\(S_i\) 是第 \(i\) 步的决策或操作,\(I\) 是初始问题,\(O_i\) 是第 \(i\) 步的输出,最终 \(O_n\) 是问题的解答。

在更复杂的数学问题中,链式思考提示可能需要更多的逻辑推理和数学知识,比如使用代数、几何、微积分等不同领域的技巧。每一步都可能涉及不同的数学工具和概念,需要精确地应用以确保问题的正确解决。

在人工智能系统中,链式思考提示的数学描述可能会涉及到概率模型、逻辑推理、优化算法等,以模拟人类的思考过程并解决复杂问题。

  • 35
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值