彻底搞懂大模型 LLM的构建流程(二)奖励建模(Reward Modeling)、强化学习(Reinforcement Learning)

三、奖励建模(Reward Modeling)

什么是奖励模型? 奖励模型是一个文本质量对比模型,它接受环境状态、生成的结果等信息作为输入,并输出一个奖励值作为反馈。奖励模型通过训练,能够识别并区分不同输出文本之间的优劣,为后续的强化学习阶段提供准确的奖励信号。

  1. 目标:构建一个文本质量对比模型,用于评估模型生成文本的质量。
  2. 数据集:需要百万量级的对比数据标注,这些数据标注需要消耗大量的人力和时间。
  3. 算法:通过二分类模型,对输入的两个结果之间的优劣进行判断。
  4. 资源:奖励模型的训练同样需要数十块GPU,并在数天内完成。
  5. 结果:得到一个能够评估模型生成文本质量的奖励模型,该模型本身并不能单独提供给用户使用,但为后续强化学习阶段提供重要支持。


为什么需要奖励模型?奖励模型能够量化并优化LLM生成的文本质量,使其更符合人类期望,从而提升LLM的性能和实用性。


奖励模型如何构建与训练? 奖励模型采用二分类结构,通过对比人工标注的文本数据集进行训练,优化参数以最小化预测错误率或最大化排序准确性,需要大量计算资源和时间。

  • 模型架构:奖励模型通常采用二分类模型的结构,通过输入一对文本(即两个输出结果),判断它们之间的优劣关系。

  • 训练数据:奖励模型的训练数据通常来源于人工标注的对比数据集。标注者需要根据预设的标准(如准确性、有用性、流畅性等)对多个输出文本进行排序或分类。

  • 训练过程:奖励模型的训练过程类似于其他机器学习模型,需要使用大量的计算资源(如数十块GPU)和较长时间(数天)来完成。

四、强化学习(Reinforcement Learning)

什么是强化学习? 根据数十万名用户给出的提示词,利用前一阶段训练的奖励模型,给出SFT模型对用户提示词补全结果的质量评估,并与语言模型建模目标综合得到更好的效果。

  1. 目标:根据奖励模型的评估,进一步优化模型生成文本的能力,使其更符合人类期望。

  2. 数据集:使用数十万用户给出的提示词和奖励模型评估的结果。

  3. 算法:利用强化学习算法(如PPO)调整模型参数,使模型生成的文本能够获得更高的奖励。

  4. 资源:相比预训练阶段,强化学习所需的计算资源较少,通常也只需要数十块GPU,并在数天内完成训练。

  5. 结果:得到最终的强化学习模型(RL模型),该模型具备更强的理解和生成能力,能够更好地满足人类的需求和期望。


为什么需要强化学习?使用强化学习,在SFT模型的基础上调整参数,使最终生成的文本可以获得更高的奖励(Reward)。

最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费


如有侵权,请联系删除。

### 强化学习在大型语言模型中的应用及其实现 强化学习Reinforcement Learning, RL)是一种通过试错来优化策略的学习范式,在许多领域取得了显著成果。当将其与大型语言模型LLM)结合时,可以通过奖励机制进一步提升生成文本的质量和特定场景下的适用性。 #### 1. 结合背景 大型语言模型通常基于监督学习进行预训练,其目标是最小化预测下一个词的概率分布误差[^2]。然而,这种单一的目标可能无法满足某些复杂应用场景的需求,例如对话系统中需要考虑上下文连贯性和用户满意度的情况。此时,引入强化学习可以帮助调整模型行为以更好地适应具体任务需求。 #### 2. 实现方式 以下是几种常见的强化学习LLM结合的方法: - **直接微调法** 使用强化信号作为额外损失项加入到标准交叉熵损失函数中,从而引导模型向期望方向演化。这种方法简单易行但可能会面临数据效率低的问题。 ```python loss = cross_entropy_loss + alpha * reward_signal ``` - **Proximal Policy Optimization (PPO)** PPO 是一种流行的算法框架,适用于连续控制问题以及序列决策过程。对于 LLM 来说,它可以用来更新参数使得生成的内容更加符合人类偏好或者特定业务指标的要求[^1]。 - **Reward Modeling** 构建专门用于评估输出质量的奖励模型,该模型可以根据实际反馈不断改进自身的判断准确性。随后利用此奖励模型指导原生 LLM 的训练流程。 #### 3. 应用实例 一个典型的例子是在聊天机器人开发过程中采用上述技术路径。通过对历史交互记录分析提取有效特征构建初始版本;再借助真实用户的即时评价动态调整回复风格直至达到理想效果为止。 ```python def train_with_rl(model, env, episodes=1000): optimizer = torch.optim.Adam(model.parameters(), lr=1e-5) for episode in range(episodes): state = env.reset() done = False while not done: action_probabilities = model(state) action_distribution = Categorical(action_probabilities) sampled_action = action_distribution.sample().item() next_state, reward, done, _ = env.step(sampled_action) # Update policy using the collected rewards and actions. log_probs = action_distribution.log_prob(torch.tensor([sampled_action])) loss = -log_probs.mean() * reward optimizer.zero_grad() loss.backward() optimizer.step() state = next_state ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值