大模型LLM | ChatGPT提示词的作用是什么?提示词使用的基本技巧和经典案例

chatgpt犹如一位博学多才、技能娴熟的全能博士,可以将它视为合作伙伴、导师、朋友、百科全书、软件工程师、搜索引擎、图书馆等角色,它拥有学贯中西的知识,卓越非凡的智慧和无所不能的本领。

想要用好chatgpt,第一个步骤就是在用户输入时,要设计好提示词(prompt),让ai可以有效精准识别,这也是为啥不同的人在使用ai工具时的体验和效果差异很大。

那么,什么是提示词呢?简单来说,提示词就是引导人工智能模型生成特定输出的关键信息或指令。它就像是一把神奇的钥匙,能够开启人工智能的无限潜力。

一、提示词的作用是什么?

提示词(Prompt)就是你输入给 ChatGPT 的指令或问题,它直接决定了 AI 给出的答案质量。因此,明确、详细和精准的提示词是获得高质量输出的关键。

一个好的提示词应该:

  • 清晰明确,避免模糊不清

  • 包含足够的上下文或背景信息

  • 根据需求,适当提供格式或结构的指示


二、提示词使用的基本技巧

  1. 明确表达需求
  • 不明确的提示词:“写一篇文章。”

  • 更明确的提示词:“写一篇关于如何有效管理时间的文章,字数控制在500字内,适合年轻职场人士阅读。”

  • 简单的提示词可能导致模棱两可的回答。因此,提供足够的信息能帮助 ChatGPT 更好地理解你的需求。例如:

  1. 提供上下文信息
  • 示例:假设你需要一篇关于营销策略的文章。

  • 提示词:“请写一篇关于数字营销策略的文章,适用于初创公司。请分析不同的社交媒体平台、SEO、以及内容营销。”

  • 如果你想要 ChatGPT 提供深度回答,添加上下文信息至关重要。这样能帮助 AI 更好地理解问题,并生成更相关的内容。

  1. 引导 AI 产生创意
  • 提示词:“提供5个有创意的品牌推广活动,适合环保行业,并结合线上线下互动方式。”

  • 你可以使用提示词引导 ChatGPT 生成新的想法或创意。举例来说:

  1. 设置输出格式
  • 示例:“列出管理项目的5个步骤,使用编号列表格式。”

  • 如果你有特定的格式要求,可以在提示词中明确提出。ChatGPT 能按照指示生成条理清晰的内容。

  1. 细分复杂问题
  • 示例:“请先列出一个品牌的核心要素,然后再解释如何通过内容营销提升品牌知名度。”

  • 对于复杂的任务,逐步细化问题会让 AI 逐一处理,输出的内容更为准确和易于理解。


三、使用提示词的经典案例

案例 1:提升写作效率

情境:你需要为公司撰写一篇介绍公司产品的文章,但又希望文章风格能够活泼轻松。

提示词
“请帮我写一篇介绍我们公司产品的文章,产品是一款帮助企业提升员工效率的管理工具。文章风格应该轻松有趣,目标读者是年轻职场人士,字数在400字以内。”

结果:ChatGPT 根据要求生成一篇活泼的介绍文稿,节省了大量时间。

案例 2:商业计划撰写

情境:你正在策划一个关于智能家居设备的创业计划。

提示词
“请为一个智能家居设备创业项目撰写一份商业计划,内容包括市场分析、竞争优势、产品功能和销售渠道。”

结果:ChatGPT 提供了市场趋势分析、竞争对手的研究,以及明确的市场策略,使你的商业计划框架更加清晰。

案例 3:编写代码

情境:你需要编写一个 Python 函数来计算两个日期之间的天数,但不确定如何实现。

提示词
“请帮我用 Python 写一个函数来计算两个日期之间的天数。”

其他案例:请用java语言编写一个快速排序算法。

结果:ChatGPT 提供了一个清晰的代码片段,解释了如何使用 datetime 模块解决问题。

案例 4:提供创意思路

情境:你在为一场即将举办的市场活动寻找创意。提示词
“请为一场线上市场活动提供5个创意,目标是吸引年轻消费者,活动可以结合社交媒体和直播平台。”

结果:ChatGPT 提出了多个有创意的想法,如通过短视频挑战、社交媒体抽奖以及与网红合作进行产品推介,帮你拓宽了思路。

四、进阶提示词使用技巧

  1. 使用角色扮演模式
  • 示例:“你现在是一个资深的市场营销顾问,请帮我设计一个适合中小型企业的内容营销策略。”

  • 你可以要求 ChatGPT 扮演某种角色,例如专家、导师或特定领域的顾问。这样可以让 AI 的回答更具针对性和专业性。

  1. 限定答案范围
  • 示例:“请简要解释什么是机器学习,字数限制在100字以内。”

  • 如果你希望 ChatGPT 的回答简洁,可以明确限制答案的长度或内容范围。

  1. 提出反问以引导深入思考
  • 示例:“为什么中小企业应该关注数据分析?请列出三个关键原因并详细解释。”

  • 当你希望深入探讨某个话题时,可以通过反问或多重问题提示来引导 ChatGPT 提供更深入的见解。


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

<think>好的,我现在需要帮用户理解在大型语言模型(LLM)中,设计system提示词assistant提示词的区别以及它们的作用对比。首先,我需要明确这两个概念的定义各自的功能。根据用户提供的引用内容,特别是引用[1]提到prompt在对话系统中引导模型生成回答,并建立上下文角色,这可能涉及到不同层次的提示词设计。 首先,system prompt通常是系统级别的指令,用来设定模型的基本行为框架,比如角色设定、回答风格或任务目标。这类似于引用[1]中提到的引导对话上下文角色。例如,system提示词可能指示模型“你是一位专业的技术支持助手”,从而让模型在回答时保持专业性。而assistant prompt则更具体,可能是在对话过程中用户或系统提供的即时指令,用于调整当前回答的方向,比如用户要求“用JSON格式输出结果”。 接下来,我需要对比两者的设计差异。根据引用[2],大模型对prompt的开头结尾更敏感,可能意味着system提示词的位置结构需要特别注意,比如放在对话的开头,确保模型正确捕获全局设定。而assistant提示词可能出现在对话中的任何位置,用于实时调整输出,比如在用户提问后添加特定的格式要求。 另外,引用[3]提到JSON格式输出案例参考,这说明assistant提示词可能需要具体的结构化指令,而system提示词则更偏向于总体指导。例如,system提示词可能包含任务的大方向,而assistant提示词提供具体的格式或步骤要求。 然后,我需要考虑两者的作用对比。System提示词作用是全局性的,确保模型在整个交互过程中保持一致性正确性,比如避免生成不相关内容。而assistant提示词则是局部调整,针对特定问题或请求进行细化,比如要求详细步骤或特定格式。 可能还需要引用用户提供的资料来支持这些观点。例如,引用[1]提到prompt帮助建立对话的上下文,这正是system提示词作用。而引用[2]中关于Markdown格式的友好性,可能属于assistant提示词的具体应用,指导模型在特定回答中使用特定格式。 最后,我需要确保回答结构清晰,分点说明差异作用,并生成相关问题。同时,检查LaTeX格式是否正确,比如变量公式是否正确使用$...$或$$...$$。例如,在提到模型行为框架时,不需要数学公式,但如果有技术术语如模型参数,可能需要用斜体或格式强调,但根据用户要求,应使用中文回答,可能不需要LaTeX。 总结起来,system提示词设定全局角色规则,assistant提示词调整具体回答,两者在层次、作用范围设计侧重点上有明显差异。需要将这些点组织成用户易懂的语言,并确保引用正确。</think>### LLM中System Prompt与Assistant Prompt的设计差异及作用对比 在大型语言模型(LLM)中,**System Prompt(系统提示词)****Assistant Prompt(助手提示词)**在功能、设计目标使用场景上有显著差异,以下是详细对比: --- #### 1. **设计目标与作用** - **System Prompt** - **全局框架设定**:用于定义模型的角色、任务目标行为边界,例如设定模型为“专业客服”或“代码助手”[^1]。 - **安全性与合规性**:限制模型生成内容的范围(如避免敏感话题)或强制遵守特定规则。 - **长期上下文维护**:通过隐式指令引导模型在整个对话中保持一致性。 - **Assistant Prompt** - **短期任务细化**:针对当前用户输入提供具体指令,例如“用JSON格式回答”或“分步骤解释”[^3]。 - **即时反馈调整**:根据对话进展动态修正输出风格或内容,如补充细节或切换语气。 --- #### 2. **设计差异** | 维度 | System Prompt | Assistant Prompt | |-------------------|----------------------------------------|---------------------------------------| | **作用范围** | 全局(整个对话生命周期) | 局部(单次交互或特定请求) | | **指令抽象程度** | 高层次、泛化(如角色定义) | 低层次、具体(如格式要求) | | **修改频率** | 低频(通常在对话开始时设定) | 高频(随用户需求动态调整) | | **技术实现** | 常作为隐藏输入嵌入对话初始化 | 显式包含在用户输入或历史上下文中 | --- #### 3. **典型示例** - **System Prompt** ```markdown “你是一位数学导师,需用中文以简洁易懂的方式解释概念,避免复杂术语。” ``` 此指令会持续影响模型对数学问题的回答风格[^2]。 - **Assistant Prompt** ```markdown “请将上述推导过程转换为公式,并用$$...$$格式排版。” ``` 此指令仅针对当前问题调整输出格式。 --- #### 4. **协同作用** 两者常结合使用以实现更精准的控制: 1. System Prompt设定模型为“技术文档撰写助手”; 2. Assistant Prompt要求“用Markdown列出5个关键点”; 3. 最终输出既符合角色定位,又满足格式需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值