图像卷积操作

目录

一、互相关运算

二、卷积层

三、图像中目标的边缘检测

四、学习卷积核

五、特征映射和感受野


一、互相关运算

       严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算。在卷积层中,输入张量和核张量通过互相关运算产生输出张量。

       首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示。在 下图中,输入是高度为 $3$、宽度为 $3$ 的二维张量(即形状为 $3 \times 3$ )。卷积核的高度和宽度都是 $2$,而卷积核窗口(或卷积窗口)的形状由内核的高度和宽度决定(即 $2 \times 2$ )。

       在二维互相关运算中,卷积窗口从输入张量的左上角开始,从左到右、从上到下滑动。当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,得到的张量再求和得到一个单一的标量值,由此我们得出了这一位置的输出张量值。

       在如上例子中,输出张量的四个元素由二维互相关运算得到,这个输出高度为 $2$、宽度为 $2$,如下所示:

$ 0\times 0+1\times 1+3\times 2+4\times 3=19, $$ $$ 1\times 0+2\times 1+4\times 2+5\times 3=25, $$ $$ 3\times 0+4\times 1+6\times 2+7\times 3=37, $$ $$ 4\times 0+5\times 1+7\times 2+8\times 3=43. $

       注意,输出大小略小于输入大小。这是因为卷积核的宽度和高度大于1,而卷积核只与图像中每个大小完全适合的位置进行互相关运算。所以,输出大小等于输入大小 $n_h \times n_w$ 减去卷积核大小 $k_h \times k_w$ 加 $1$,即:

$(n_h-k_h+1) \times (n_w-k_w+1).$

       接下来,我们在`corr2d`函数中实现如上过程,该函数接受输入张量`X`和卷积核张量`K`,并返回输出张量`Y`。

import torch
from torch import nn
from d2l import torch as d2l
def corr2d(X, K):
    """计算二维互相关运算"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))   # 先算出输出张量的形状并初始化为0
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()   # 输出张量的每一个元素都是X与K经过某种计算得到的
    return Y    # 返回二维互相关运算后的结果Y

       我们来验证上述二维互相关运算的输出。

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
print(corr2d(X, K))
tensor([[19., 25.],
        [37., 43.]])

二、卷积层

       卷积层对输入和卷积核权重进行互相关运算,并在添加标量偏置之后产生输出。所以,卷积层中的两个被训练的参数是卷积核权重和标量偏置,如下图所示。就像我们之前随机初始化全连接层一样,在训练基于卷积层的模型时,我们也随机初始化卷积核权重。

       基于上面定义的`corr2d`函数实现二维卷积层。在`__init__`构造函数中,将`weight`和`bias`声明为两个模型参数。前向传播函数调用`corr2d`函数并添加偏置。

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size))
        self.bias = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

       高度和宽度分别为 $h$ 和 $w$ 的卷积核可以被称为 $h \times w$ 卷积或 $h \times w$ 卷积核。我们也将带有 $h \times w$ 卷积核的卷积层称为 $h \times w$ 卷积层。

三、图像中目标的边缘检测

       如下是卷积层的一个简单应用:通过找到像素变化的位置,来检测图像中不同颜色的边缘。

       首先,我们构造一个 $6\times 8$ 像素的黑白图像。中间四列为黑色($0$),其余像素为白色($1$)。

X = torch.ones((6, 8))
X[:, 2:6] = 0
print(X)
tensor([[1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.]])

       接下来,我们构造一个高度为 $1$、宽度为 $2$ 的卷积核`K`。当进行互相关运算时,如果水平相邻的两元素相同,则输出为零,否则输出为非零。

K = torch.tensor([[1.0, -1.0]])

       现在,我们对参数`X`(输入)和`K`(卷积核)执行互相关运算。如下所示,输出`Y`中的1代表从白色到黑色的边缘,-1代表从黑色到白色的边缘,其他情况的输出为0。

Y = corr2d(X, K)
Y
tensor([[ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.]])

       现在我们将输入的二维图像转置,再进行如上的互相关运算。其输出如下,之前检测到的垂直边缘消失了。不出所料,这个卷积核`K`只可以检测垂直边缘,无法检测水平边缘。

corr2d(X.t(), K)
tensor([[0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.]])

四、学习卷积核

       如果我们只需寻找黑白边缘,那么以上`[1, -1]`的边缘检测器足以。然而,当有了更复杂数值的卷积核,或者连续的卷积层时,我们不可能手动设计滤波器。那么我们可以学习由`X`生成`Y`的卷积核。

       现在让我们看看是否可以通过仅查看“输入-输出”对来学习由`X`生成`Y`的卷积核。我们先构造一个卷积层,并将其卷积核初始化为随机张量。接下来,在每次迭代中,我们比较`Y`与卷积层输出的平方误差,然后计算梯度来更新卷积核。为了简单起见,我们在此使用内置的二维卷积层,并忽略偏置。

# 构造一个二维卷积层,它具有1个输入通道、1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1, 1, kernel_size=(1, 2), bias=False)    # 因为我们前面用的是二维互相关运算corr2d()由X生成的Y,因此不需要bias

# 这个二维卷积层使用四维输入和输出格式(批量大小、通道、高度、宽度),
# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2  # 学习率

for i in range(10):
    Y_hat = conv2d(X)
    l = (Y_hat - Y) ** 2    # 使用均方误差
    conv2d.zero_grad()
    l.sum().backward()
    # 迭代卷积核
    conv2d.weight.data[:] -= lr * conv2d.weight.grad    # 手写实现梯度下降
    if (i + 1) % 2 == 0:
        print(f'epoch {i+1}, loss {l.sum():.3f}')
epoch 2, loss 6.422
epoch 4, loss 1.225
epoch 6, loss 0.266
epoch 8, loss 0.070
epoch 10, loss 0.022

       在10次迭代之后,误差已经降到足够低。现在我们来看看我们所学的卷积核的权重张量。

conv2d.weight.data.reshape((1, 2))
tensor([[ 1.0010, -0.9739]])

       我们学习到的卷积核权重非常接近我们之前定义的卷积核`K`。

五、特征映射和感受野

       下图中输出的卷积层有时被称为特征映射(feature map),因为它可以被视为一个输入映射到下一层的空间维度的转换器。

       在卷积神经网络中,对于某一层的任意元素 $x$,其感受野(receptive field)是指在前向传播期间可能影响 $x$ 计算的所有元素(来自所有先前层)。

       请注意,感受野可能大于输入的实际大小。让我们用上图为例来解释感受野:给定 $2 \times 2$ 卷积核,阴影输出元素值 $19$ 的感受野是输入阴影部分的四个元素。假设之前输出为 $\mathbf{Y}$,其大小为 $2 \times 2$,现在我们在其后附加一个卷积层,该卷积层以 $\mathbf{Y}$ 为输入,输出单个元素$z$。在这种情况下,$\mathbf{Y}$ 上的 $z$ 的感受野包括 $\mathbf{Y}$ 的所有四个元素,而输入的感受野包括最初所有九个输入元素。

       因此,当一个特征图中的任意元素需要检测更广区域的输入特征时,我们可以构建一个更深的网络。

CNN(Convolutional Neural Network)是一种常用的深度学习模型,特别适合处理图像二维数据。CNN中的图像数据卷积操作是其最核心的部分。 卷积操作是通过将一个滤波器(或称为卷积核)应用于输入图像的不同位置来提取特征。滤波器通常是一个小的矩阵,在卷积过程中与输入图像进行逐元素相乘,并将结果相加得到一个输出值。输出值将会形成一个新的矩阵,称为特征卷积操作的实质是对输入图像进行局部信息的提取。通过滤波器的移动,在不同位置上提取的特征可以对应于不同的图像局部区域,例如边缘、纹理、颜色等。卷积操作的主要思想是共享权重,即在整个图像中,无论位置如何改变,滤波器的参数都是相同的。这样可以大大减少需要训练的参数数量。 在CNN中,通常会通过堆叠多个卷积层来增加模型的深度。每个卷积层使用一组滤波器来获取不同的特征。这些特征会被进一步处理(例如通过池化层进行下采样)并传递给下一层。多个卷积层的叠加可以提取出更加抽象和复杂的图像特征卷积操作具有平移不变性和局部连接性的特点。平移不变性意味着图像中某个特征的位置发生变化时,它所提取的特征仍然能够被识别。局部连接性意味着每个特征仅与输入图像中一小部分相邻像素相连接,使得模型具有更高的计算效率。 总而言之,CNN中的图像数据卷积操作是通过滤波器在不同位置上提取局部特征,并通过堆叠多个卷积层来获取更加抽象的特征。这一操作使得CNN在处理图像二维数据时具有较好的性能和计算效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值