第3章 命题逻辑

目录

1 命题与命题联结词

1.1 命题

1.2 命题联结词

1.3 命题联结词的运用

2 命题公式

2.1 复习命题常项与命题变项

2.2 命题公式

2.3 命题公式层次

2.4 命题公式的赋值和真值表

2.5 命题公式的分类

2.6 真值函数

2.7 等值演算

2.8 代入规则与置换规则

3 范式

3.1 析取范式和合取范式

3.1.1 定义

3.1.2 范式存在定理

3.1.2.1 定义

3.1.2.2 求解步骤

3.2 主析取范式和主合取范式

3.2.1 极小项和极大项

3.2.1.1 定义

3.2.1.2 极小项性质

3.2.1.3 极大项性质

3.2.1.4 二者总结

3.2.2 主析取范式和主合取范式

3.2.2.1 定义

3.2.2.2 求解方法

1 公式转换法

2 真值表技术

3 范式相互转化

4 命题逻辑的推理理论

4.1 定义

4.2 判断有效结论的正确方法

4.2.1 推理定律

4.2.2 三大方法

1 真值表技术

2 演绎法

3 反证法

3.1 原理

3.2 做题方法


1 命题与命题联结词

1.1 命题

定义

定义:能判断真假的陈述句称为命题。该命题只可以取一个值,称为真值,真值只有真和假,分别用0(F)或1(T)表示

例子:

  1. 太阳是圆的
  2. 2是素数
  3. 雪是黑色的

命题的分类

简单命题(原子命题)

概念:不能再分解为更简单的命题。对于简单命题来说,它的真值是确定的(永远不变),因而又称为命题常项命题常元

例子:x+y>5,当x与y的值确定后,它的真值就确定下来了,这种真值可以变化的简单命题称为:命题变项命题变元(真值取决于具体情况)

  • 注意:命题变项不是命题

复合命题

概念:简单命题用如“或者”、“并”、“如果,则”等这样的联结词联结而成的命题

例如:

  1. 林芳学过英语或日语
  2. 如果角A和角B是对顶角,则角A等于角B

1.2 命题联结词

否定联结词

定义:设p为任一命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作¬p,¬为否定联结词,¬p为真当且仅当p为假

合取联结词

定义:设p,q为两命题,复合命题“p并且q”(或“p和q”)称作p与q的合取式,记作p∧q,∧为合取联结词,p∧q为真当且仅当p与q同时为真

析取联结词

定义:设p,q为两命题,复合命题“p或q”称作p与q的析取式,记作p∨q,∨为析取联结词,p∨q为真当且仅当p与q中至少一个为真

蕴涵联结词

定义:设p,q为两命题,复合命题“如果p,则q”称作p与q的蕴涵式,记作p→q,称p为蕴涵式的前件,q为蕴涵式的后件,→称作蕴涵联结词,p→q为假当且仅当p为真且q为假

p→q表示的基本逻辑关系:q是p的必要条件,或p是q的充分条件

理解方式

方法1

蕴涵联结词理解成一种承诺合同

例子:教授承诺说:如果你在期末考试中得了满分,那么你的成绩将被评定为A。换成逻辑表达式有:

p为“你在期末考试中得了满分”

q为“你的成绩将被评定为A”

p→q为“如果你在期末考试中得了满分,那么你的成绩将被评定为A”

违背承诺的唯一情况:你在期末考试中得了满分,但教授没有给你A。即p为真且q为假时,p→q才为假

对于p为假的情况:如果你在期末考试中没有满分,无论教授最后有没有给你A,都不能说教授违背承诺,即p为假,p→q必为真

方法2

从集合论角度理解蕴涵联结词

p->q:q是p的必要条件。如果把p和q看作集合,则p包含于q,记作p⊂q,如图所示:

S为全集,相互的关系有:Ø⊂p⊂q⊂S 其中,Ø为任意集合的子集。 

p为真时,p→q的在集合论中表达的是p⊂q,也就p是q的子集。

p为假时p代表空集,这是因为:命题环境中不需要关注¬p(恒假)的情况,必须恒真才能做演绎推理(即前提为真才能推理)为假无意义,所以p=Ø。此时p→q 等价于 Ø→q ,永远是真的

例子:教授承诺说:如果你在期末考试中得了满分,那么你的成绩将被评定为A。换成逻辑表达式有:

p为“你在期末考试中得了满分”

q为“你的成绩将被评定为A”

p→q为“如果你在期末考试中得了满分,那么你的成绩将被评定为A”

当p为假时,前提条件p没有发生,p为空集。因此,无论是否评定为A,都不能说p→q为假

等价联结词

定义:设p,q为两命题,复合命题“p当且仅当q”称作p与q的等价式,记作p↔q,↔称作等价联结词,p↔q真当且仅当p,q真值相同

p↔q表示的基本逻辑关系:p与q互为充分必要条件,因为p与q的真值同为真或同为假

1.3 命题联结词的运用

  • 注意:图中红色圆圈表示取反

设输入端A:高电平,输入端B:高电平

从左往右依次表示A∧B,A∨B,¬A

2 命题公式

2.1 复习命题常项与命题变项

命题常项:命题真值始终不变

命题变项:取决于具体情况

2.2 命题公式

定义:命题公式由命题常项、命题变项、联结词、括号等组成的字符串,严格定义如下:

  1. 单个命题变项p,q,r,...,p_i,q_i,r_i,...是合式公式
  2. 如果A是合式公式,则(¬A)也是合式公式
  3. 如果A、B是合式公式,则(A∧B)、(A∨B)、(A→B)、(A↔B)也是合式公式
  4. 只有有限次地应用(1)~(3)组成的符号串才是合式公式

注意:在命题逻辑中合式公式又被称为命题公式,简称为公式

例子:“如果提高天然气占能源的比例,且烧干净的煤,那么空气质量就能提升许多。”用命题公式符号化该命题。

设P:提高天然气古能源的比例; Q:烧干净的煤: R:空气质量就能提升许多 。

该命题可符号化为(P∧Q)→R。

2.3 命题公式层次

定义:

(1)若A是单个命题变项,则称A是0层公式

(2)称A是n+1(n≥0)层公式是指A符合下列情况之一

  1. A=¬B,B是n层公式
  2. A=B∧C ,其中B、C分别为i层和j层公式,且n=max(i,j)(A=B∨C,A=B→C,A=B↔C同理)

总结联结词规律

  1. 遇到¬,层次+1
  2. 遇到其余联结词,观察联结词两边的式子,找出最大值,最大值+1

例子:

1、¬p∨q

2、p∧q∧r

3、¬(¬p∧q)→(r∨s)

第一题:p为0层公式,因此¬p为一层公式,q为0层公式,故最大值为1,最大值+1=2,所以为2层

第二题:看第二个∧的两边,先看p∧q,按照第一题做法,为1层公式;再看p∧q∧r,为0层公式;对比p∧q和r,最大值为1,最大值+1=2,所以为2层

第三题:看→的两边,先看¬(¬p∧q),¬p∧q用第一题的方法算出是2层,从而¬(¬p∧q)为3层;再看r∨s,用第一题的方法算出是1层;对比¬(¬p∧q)和r∨s,最大值为3,最大值+1=4,所以为4层

2.4 命题公式的赋值和真值表

赋值定义

设A为一命题公式,p_1,p_2,...,p_n为出现在A中的所有的命题变项,给p_1,p_2,...,p_n指定一组真值,称为对A的一个赋值解释,若指定的一组值使A的值为真,则称这组值为为A的成真赋值,若使A的值为假,则称这组值为A的成假赋值

真值表

这含n个命题变项的命题公式共有2^n组赋值,将命题公式A在所有赋值之下取值的情况列成表,称为A的真值表,构造步骤如下:

  1. 找出命题公式中所含的所有命题变项p_1,p_2,...,p_n
  2. 按从低到高的顺序写出各层次
  3. 列出所有可能的赋值,从00...0(n位)开始,每次加1,直到11...1为止
  4. 对应每个赋值,计算命题公式各层次的值,直到最后计算出命题公式的值

例子:(p∧(p→q))→q

pqp→qp∧(p→q)(p∧(p→q))→q
00101
01101
10001
11111

由真值表可知,无成假赋值

2.5 命题公式的分类

设A为一个命题公式

  1. 若A在所有赋值下取值均为真,则称A为重言式永真式
  2. 若A在所有赋值下取值均为假,则称A为矛盾式永假式
  3. 若A至少存在一组成真赋值,则称A是可满足式

注意:重言式一定是可满足式,反之不成立

例子:¬(p→q)∧q

pqp→q¬(p→q)¬(p→q)∧q
00100
01100
10010
11100

由真值表知:无成真赋值,为永假式

2.6 真值函数

笛卡尔积

给定两个集合 A 和 B,它们的笛卡尔积(Cartesian product)表示为 A × B,它是由所有形如 <a, b>的有序对构成,其中 a 属于 A,b 属于 B。

真值函数

定义:定义域为{00…0, 00…1, …, 11…1},值域为{0,1}的函数是n元真值函数,定义域中的元素是长为n的0,1串. n元真值函数F记为F: \begin{Bmatrix} 0,1 \end{Bmatrix}^n\rightarrow \begin{Bmatrix} 0,1 \end{Bmatrix}表示Fn元真值函数

  • 注意:\begin{Bmatrix} 0,1 \end{Bmatrix}^n为n阶笛卡尔积

n个命题变项,共有2^n个可能的赋值,对于不同的赋值,真值函数的函数值为0或1,所有n个命题变项可形成2^{2^n}个不同的真值函数

例子:两个命题变项p、q,其真值函数是什么

pqF{_{1}}F{_{2}}F{_{3}}F{_{4}}F{_{5}}F{_{6}}F{_{7}}F{_{8}}
0000000000
0100001111
1000110011
1101010101
pqF{_{9}}F{_{10}}F{_{11}}F{_{12}}F{_{13}}F{_{14}}F{_{15}}F{_{16}}
0011111111
0100001111
1000110011
1101010101

两个命题变项p,q的真值函数有16个,例如F{_{3}}对应¬(p→q)或与其等值的命题公式

2.7 等值演算

等值定义

设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B

简单理解:真值表结果完全等同

  • 注意:<=>不是联结词符,是等值时的简便记法

命题公式等值关系

A、B、C代表任意的命题公式

(1)双重否定律:A ⇔  ¬(¬A);

(2)等幂律:A ⇔ A ∨ A;

        A ⇔ A ∧ A。

(3)交换律:A ∨ B ⇔ B ∨ A;

                       A ∧ B ⇔ B ∧  A。

(4)结合律:(A ∨ B) ∨ C ⇔  A ∨ (B ∨ C);

                        (A ∧ B) ∧ C ⇔ A ∧ (B ∧ C)。

(5)分配律:A ∨ (B ∧ C) ⇔  (A ∨ B) ∧ (A ∨ C);

        A ∧ (B ∨ C) ⇔  (A ∧ B) ∨ (A ∧ C);

(6)吸收律:A ∨ (A ∧ B)  ⇔  A;

        A ∧ (A ∨ B)  ⇔  A。

(7)零律:A ∨ 1 ⇔ 1;

       A ∧ 0 ⇔  0。

(8)同一律:A ∨ 0 ⇔ A;

        A ∧ 1 ⇔ A。

(9)排中律:A ∨ ¬A  ⇔ 1;

(10)矛盾律:A ∧ ¬A ⇔ 0。

(11)德.摩根律:¬(A ∨ B) ⇔ ¬A ∧ ¬B;

         ¬(A ∧ B) ⇔ ¬A ∨ ¬B。

(12)蕴含等值式:A → B ⇔ ¬A∨B

(13)等价等值式:A ↔ B ⇔ (A → B) ∧ (B → A)

(14)假言易位:A → B ⇔ ¬B → ¬A

(15)等价否定等值式:A ↔ B ⇔ ¬A ↔ ¬B

(16)归谬论:(A → B)  ∧ ( A → ¬B) ⇔ ¬A

证明:蕴含等值式 A → B ⇔ ¬A∨B

列出真值表

ABA→B¬A∨B
0011
0111
1000
1111

可以看出,二者真值结果相等,所以等价

证明:归谬论:(A → B)  ∧ ( A → ¬B) ⇔ ¬A

当A为真时,¬A为假。对于B、¬B,必然一真一假,不妨设B为假,则A → B为假,因此(A → B)  ∧ ( A → ¬B) 为假,从而当A为真时,(A → B)  ∧ ( A → ¬B) ⇔ ¬A

当A为假时,¬A为真。因为A为假,所以A → B,A → ¬B必为真,因此(A → B)  ∧ ( A → ¬B) 为真,从而当A为假时,(A → B)  ∧ ( A → ¬B) ⇔ ¬A

综上,归谬论成立

2.8 代入规则与置换规则

代入规则

定义:设G(p_1,p_2,...,p_n)是一个命题公式,其中,p_1,p_2,...,p_n是G中的n个命题变元,G_1(p_1,p_2,...,p_n)G_2(p_1,p_2,...,p_n),...,G_n(p_1,p_2,...,p_n)任意的命题公式,若G为永真公式或永假公式,则用G_1取代p_1,...,G_n取代p_n得到的新的命题公式:

G(G_1,G_2,...,G_n)={G}'(p_1,p_2,...,p_n)

仍然是一个永真公式或永假公式

  • 简单理解:若为永真式或永假式,用任意公式代替所有命题变元p,得到的新公式仍然是永真式或永假式

证明:永真式(重言式)对任意指派(任意赋值),其值都是真,与所给的某个命题变元p指派的真值是真还是假无关,因此用任一公式处处替代命题变元p后依然永真

例子:证明G(p,q)=(p∧(p→q))→q是一个永真公式,H(p,q)=p∨¬q,S(p,q)=p↔q,验证G(H,S)也是永真式

G(p,q)真值表如下:

pqp→qp∧(p→q)(p∧(p→q))→q
00101
01101
10001
11111

所以G是一个永真公式,将H,S代入G得公式G:

R(p,q)=G(H,S)=(H∧(H→S))→S=((p∨¬q)∧((p∨¬q)→(p↔q)))→(p↔q)

pq((p∨¬q)∧((p∨¬q)→(p↔q)))→(p↔q)
001
011
101
111

所以公式R仍然为永真式

置换规则

定义:设G(A)是含命题公式A的命题公式,G(B)是用命题公式B置换了G(A)中的A之后得到的命题公式,如果A⇔B,则G(A)⇔G(B)

证明:因为A与B等值,对任意的赋值,A与B的值都相等,因此代入G中,结果必然一致,得证

例1:验证p→(q→r) <=> (p∧q)→r

解:p→(q→r)
<=> ¬p∨(¬q∨r) (蕴涵等值式 置换规则)

<=> (¬p∨¬q)∨r (结合律 置换规则)

<=> ¬(p∧q)∨r (德摩根律 置换规则)

<=> (p∧q)→r (蕴涵等值式 置换规则)

例2:验证p<=>(p∧q)∨(p∧¬q)

解:p

<=> p∧1(同一律 置换规则)

<=> p∧(q∨¬q)(排中律 置换规则)

<=> (p∧q)∨(p∧¬q)(分配律 置换规则)

3 范式

3.1 析取范式和合取范式

3.1.1 定义

简单析取式、简单合取式

定义:命题变项及其否定统称作文字,仅由有限个文字构成的析取式称为简单析取式,仅由有限个文字构成的合取式称为简单合取式

  • 简单理解:∧表示合取,表示“并且”。∨表示析取,表示“或”。

例如:

  1. p,¬p,p∨q是简单析取式
  2. p,¬p,p∧q是简单合取式

析取范式和合取范式

定义:仅由有限个简单合取式构成的析取式称为析取范式,仅由有限个简单析取式构成的合取式称为合取范式

例如:

  1. p,¬p是析取范式、合取范式
  2. p∨q∨r是析取范式,也是合取范式,但(p∨q∨r)只是合取范式
  3. p∧q∧r是析取范式,也是合取范式,但(p∧q∧r)只是析取范式
  4. (p∧q)∨(¬p∧q)是析取范式
  5. (p∨q)∧(¬p∨q)是合取范式

问题:为什么p∨q∨r是析取范式,也是合取范式,但(p∨q∨r)只是合取范式(p∧q∧r同理)

(1)将p,q,r看作3个简单合取式,则简单合取式的析取称为析取范式

(2)将p,q,r看作3个文字,则文字的析取称为简单析取式,一个简单析取式符合"有限个简单析取式构成的合取式称为合取范式"的定义,因此可以称为合取范式

(3)括号的语义为括号内是一个整体,即把简单析取式看成一个整体 ,从而是合取范式 

性质:

  1. 一个析取范式是矛盾式,当且仅当它的每个简单合取式都是矛盾式
  2. 一个合取范式是重言式,当且仅当它的每个简单析取式都是重言式

3.1.2 范式存在定理

3.1.2.1 定义

定义:任一命题公式都存在与之等值的析取范式和合取范式,命题公式的析取范式和合取范式不是唯一的

3.1.2.2 求解步骤

任一命题公式求与之等值的析取范式和合取范式的具体步骤如下:

  1. 消去→和↔
  2. 否定号的消去或内移
  3. 使用分配律,求析取范式应该用“∧”对“∨”的分配律,求合取范式则恰好相反

例:求((p∨q)→r)→p的合取范式和析取范式

(1)求合取范式:

((p∨q)→r)→p

<=>¬(¬(p∨q)∨r)∨p(消去→)

<=>¬((¬p∧¬q)∨r)∨p(¬内移)

<=>((¬¬p∨¬¬q)∧¬r)∨p(¬内移)

<=>((p∨q)∧¬r)∨p(¬消去)

<=>(p∨q∨p)∧(¬r∨p)(∨对∧分配律)

<=>(p∨q)∧(¬r∨p)

(2)求析取范式

前四步相同,在第五步稍作改变:

((p∨q)→r)→p

<=>((p∨q)∧¬r)∨p

<=>(p∧¬r)∨(q∧¬r)∨p(∧对∨分配律)

<=>p∨(q∧¬r)(交换律,吸收律)

3.2 主析取范式和主合取范式

3.2.1 极小项和极大项

3.2.1.1 定义

定义:在含有n个命题变元的P1,P2.... Pn的简单合取式或简单析取式中,若每个命题变元与其否定不同时存在,但二者之一恰好出现一次且仅出现一次,并且出现的次序与P1,P2.... Pn一致,则称简单合取式简单析取式为关于P1,P2.... Pn的一个极小项极大项

例如: 两个命题变元p和q

对应的极小项有四项:p∧q、¬p∧q、p∧¬q、¬p∧¬q

对应的极大项有四项:p∨q、¬p∨q、p∨¬q、¬p∨¬q

3.2.1.2 极小项性质

性质:

  1. 没有两个不同的极小项是等价的
  2. 每个极小项只有一组成真赋值,极小项的编码就是使极小项为真或为1的一组赋值
  3. 编码规则:命题变元与1对应,命题变元的否定与0对应
  4. n个命题变元可产生2^n个极小项

m是极小项的表示,其编码顺序为:从00...0(n位)开始,每次加1,直到11...1为止

例子:已知两个命题变元p和q,列出极小项

共有2^2=4个极小项,如下

赋值记作
¬p∧¬q00记作m{_{00}}(m{_{0}})m{_{0}}
¬p∧q01记作m{_{01}}(m{_{1}})m{_{1}}
p∧¬q10记作m{_{10}}(m{_{2}})m{_{2}}
p∧q 11记作m{_{11}}(m{_{3}})m{_{3}}
3.2.1.3 极大项性质

性质:

  1. 没有两个不同的极大项是等价的
  2. 每个极小项只有一组成假赋值,极大项的编码就是使极大项为假或为0的一组赋值
  3. 编码规则:命题变元与0对应,命题变元的否定与1对应
  4. n个命题变元可产生2^n个极大项

M是极大项的表示,其编码顺序为:从00...0(n位)开始,每次加1,直到11...1为止

例子:已知两个命题变元p和q,列出极小项

共有2^2=4个极小项,如下

赋值记作
p∨q00记作M{_{00}}(M{_{0}})M{_{0}}
p∨¬q01记作M{_{01}}(M{_{1}})M{_{1}}
¬p∨q10记作M{_{10}}(M{_{2}})M{_{2}}
¬p∨¬q 11记作M{_{11}}(M{_{3}})M{_{3}}
3.2.1.4 二者总结

极大项与极小项总结:

  1. 任意两个不同的极小项合取必为0,任意两个不同的极大项的析取必为1
  2. 极大项的否定式极小项,极小项的否定是极大项
  3. 所有极小项的析取是永真公式,所有极大项的合取是永假公式

解析:第一点和第三点的核心都是:两个不同的极小项或极大项(不存在等价的极大项或极小项),在同一赋值下必然一真一假

3.2.2 主析取范式和主合取范式

3.2.2.1 定义

在给定的析取范式中,若每一个简单合取式都是极小项,则称该范式为主析取范式

在给定的合取范式中,若每一个简单析取式都是极大项,则称该范式为主合取范式

3.2.2.2 求解方法
1 公式转换法

主析取范式

用一个例题说明所有步骤

例题:求公式(p→q)→(q∧r)的主析取范式

(p→q)→(q∧r)

<=>¬(¬p∨q)∨(q∧r)

<=>(p∧¬q)∨(q∧r) (第一步:求析取范式)

<=>(p∧¬q∧(¬r∨r))∨((¬p∨p)∧q∧r) (第二步:补充缺少的命题变元)

<=>(p∧¬q∧¬r)∨(p∧¬q∧r)∨(¬p∧q∧r)∨(p∧q∧r)

<=>(¬p∧q∧r)∨(p∧¬q∧¬r)∨(p∧¬q∧r)∨(p∧q∧r) (第三步:按大小顺序得主析取范式)

<=>m3∨m4∨m5∨m7

主合取范式

用一个例题说明所有步骤

例题:求公式(p→q)→(q∧r)的主合取范式

(p→q)→(q∧r)

<=>(p∧¬q)∨(q∧r)

<=>(p∨q)∧(p∨r)∧(¬q∨q)∧(¬q∨r)

<=>(p∨q)∧(p∨r)∧(¬q∨r) (第一步:求合取范式)

<=>(p∨q∨(¬r∧r))∧(p∨(¬q∧q)∨r)∧((¬p∧p)∨¬q∨r) (第二步:补充缺少的命题变元)

<=>(p∨q∨¬r)∧(p∨q∨r)∧(p∨¬q∨r)∧(p∨q∨r)∧(¬p∨¬q∨r) ∧(p∨¬q∨r) 

<=>(p∨q∨¬r)∧(p∨q∨r)∧(p∨¬q∨r)∧(¬p∨¬q∨r) 

<=>(p∨q∨r)∧(p∨q∨¬r)∧(p∨¬q∨r)∧(¬p∨¬q∨r) (第三步:按大小顺序得主合取范式)

<=>M0∧M1∧M2∧M6

2 真值表技术

主析取范式

用一个例题说明所有步骤

例题:求公式¬(p→q)∨r的主析取范式

真值表如图所示: 

pqrp→q¬(p→q)¬(p→q)∨r
000100
001101
010100
011101
100011
101011
110100
111101

第一步,找出¬(p→q)∨r的成真赋值

由表:001、011、100、101、111是原公式的成真赋值

第二步,找出对应的极小项,并将极小项进行析取

对应的极小项为:¬p∧¬q∧r、¬p∧q∧r、p∧¬q∧¬r、p∧¬q∧r、p∧q∧r

所以¬(p→q)∨r的主析取范式为:

(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧¬r)∨(p∧¬q∧r)∨(p∧q∧r)<=>m1∨m3∨m4∨m5∨m7

主合取范式

例题:求公式¬(p→q)∨r的主合取范式

真值表如图所示: 

pqrp→q¬(p→q)¬(p→q)∨r
000100
001101
010100
011101
100011
101011
110100
111101

第一步,找出¬(p→q)∨r的成假赋值

由表:000、010、110是原公式的成假赋值

第二步,找出对应的极大项,并将极大项进行合取

对应的极大项为:p∨q∨r、p∨¬q∨r、¬p∨¬q∨r

所以¬(p→q)∨r的主合取范式为:

(p∨q∨r)∧(p∨¬q∨r)∧(¬p∨¬q∨r)<=>M0∧M2∧M6

3 范式相互转化

极小项和极大项的关系

M_{i}=\neg m_{i} m_{i}=\neg M_{i}

范式相互转化

已知公式G的主析取范式,求公式G的主合取范式的步骤:

第一步:求¬G的主析取范式

G=\lor_{i=1}^{k}m_{l_{i}}为G的主析取范式,则\neg G=\lor_{i=1}^{2^n-k}m_{j_{i}}为¬G的主析取范式

  • 其中,m_{j_{i}}(i=1,2,3,...,2^n-k)m_{i}(i=0,1,2,3,...,2^n-1)中去掉m_{^{l{i}}}(i=1,2,3,...,k)

后剩下的极小项

第二步:求G=¬(¬G)的主合取范式

G=\neg(\neg G)=\neg(\lor_{i=1}^{2^n-k}m_{j_{i}})=\land_{i=1}^{2^n-k}\neg m_{j_{i}}=\land_{i=1}^{2^n-k}M_{j_{i}}

已知主合取范式,求它的主析取范式也同理

例如:G是含有三个命题变元的公式,G的主析取范式为:m1∨m3∨m4∨m5∨m7,则¬G的主析取范式为:m0∨m2∨m6,则G=¬(¬G)的主合取范式为M0∧M2∧M6

三大定理

如果命题公式是永真公式<=>它的主析取范式包含所有的极小项,此时无主合取范式或者说主合取范式为“空”

证明:因为任意赋值,该命题公式都为真,因此主析取范式包含了所有极小项以确保有一个极小项为真,这样主析取范式必为真。假设包含主合取范式,则必然存在成假赋值,矛盾

如果命题公式是永假公式<=>它的主合取范式包含所有的极大项,此时无主析取范式或者说主析取范式为“空”

证明:因为任意赋值,该命题公式都为假,因此主合取范式包含了所有极大项以确保有一个极大项为假,这样主合取范式必为假。假设包含主析取范式,则必然存在成真赋值,矛盾

两个命题公式是等价的<=>它们对应的主析取范式之间等价,或者(可以兼或)它们对应的主合取范式之间等价

证明:设两个命题公式为A和B,假设它们的主析取范式不等价,假设A有某一极小项m_{i}而B没有,则角标i所对应的二进制表示为A的成真赋值,为B的成假赋值,这与A和B等价矛盾。主合取范式同理

4 命题逻辑的推理理论

4.1 定义

(A_{1} \land A_{2} \land ... \land A_{k})\rightarrow B为重言式,则称A_{1} \land A_{2} \land ... \land A_{k}推出结论B的推理正确,B是

A_{1} \land A_{2} \land ... \land A_{k}逻辑结论有效结论。称(A_{1} \land A_{2} \land ... \land A_{k})\rightarrow B为由前提A_{1} \land A_{2} \land ... \land A_{k}推出结论B的推理的形式结构

注意:

  1. 对于A_{1} \land A_{2} \land ... \land A_{k},有时用集合Γ 来表示,记Γ=\begin{Bmatrix} A_{1} \land A_{2} \land ... \land A_{k} \end{Bmatrix}
  2. 同用A<=>B和A=>B表示A↔B和A→B是重言式

4.2 判断有效结论的正确方法

4.2.1 推理定律

根据真值表技术,可以得到常用的推理定律

可以用集合的知识来理解上述定律,例如:构造性二难

由A→B和C→D,可知,集合A是集合B的子集,集合C是集合D的子集,如图所示:

S为全集,相互之间的关系为:A⊂B⊂S,C⊂D⊂S

由置换规则,将A→B和C→D转化为:¬A∨B和¬C∨D,所属集合如图所示:结果都为全集S

(¬A∨B)∧(¬C∨D)∧(A∨C),所属集合如图所示:结果为A∨C

A∨C显然为B∨D的子集,所以有:A∨C=>B∨D,从而得证

其它的定理也可以用集合的方法来理解记忆

4.2.2 三大方法

1 真值表技术

p_1,p_2,...,p_n是出现在前提A_{1},A_{2},...,A_{k}和结论B中的一切命题变元,如果将p_1,p_2,...,p_n所有可能的解释及A_{1},A_{2},...,A_{k},B的对应真值结果都列在一个表中,由“→”的定义,有两种方法:

  1. 对所有A_{1},A_{2},...,A_{k}都具有真值“1”的行(前提为真),如果在每一个这样的行中,B也具有这样的真值“1”,则B是A_{1},A_{2},...,A_{k}的逻辑结果
  2. 对所有B具有真值“0”的行(结论为假),如果在每一个这样的行中,A_{1},A_{2},...,A_{k}中至少有一个公式的真值为“0”(前提为假),则B是A_{1},A_{2},...,A_{k}的逻辑结果

例子:已知H:q;G1:p;G2:p→q,判断H是否为前提G1和G2的逻辑结果

pqp→q
001
011
100
111

真值表技术第一条判定方法

前提p和p→q只有第四行同时为真,此时结果q也为真,从而有:p∧(p→q)=>q,因此成立

真值表技术第二条判定方法

结果q为假的行为1,3行,此时前提p和p→q中至少有一个为假,从而有:p∧(p→q)=>q,因此成立

2 演绎法

演绎法从前提(假设)出发,依据公认的推理规则和推理定律,推导出一个结论来,演绎法需要引入以下规则:

(1)规则P(称为前提引用规则),在推导的过程中,可随时引入前提集合中的任意一个前提

(2)规则T(称为逻辑结果引用规则),在推导的过程中,可以随时引入公式S,该公式S是由其前的一个或多个公式推导出来的逻辑结果

(3)规则CP(称为附加前提规则),如果能从给定的前提集合Γ与公式P推导出S,则能从此前提集合Γ推导出P→S

规则CP应用场合:当结论是P→S(¬P∨S,或P∨S)时,如果把P或¬P作为“附加前提”添加到集合Γ中,而S可在已给的前提与附加前提P下推导出来,即(Γ∧P)=>S,则有Γ=>P→S

接下来证明:(Γ∧P)→S,Γ→P→S是等价的

Γ→P→S<=>¬Γ∨(¬P∨S)<=>(¬Γ∨¬P)∨S<=>¬(ΓP)∨S<=>(Γ∧P)→S

  • 注意:(Γ∧P)=>S代表(Γ∧P)→S位重言式,因此可以看作=>是→

例题

设前提集合Γ={P∨Q,P↔R,Q→S},公式G=S∨R,证明Γ=>G

符号说明:“P”代表引入前提;“T”代表该公式是由前面公式推出的逻辑结果,序号代表由哪几个公式推出,后面的“I”代表使用的是基本的蕴涵关系(推理定律,对应4.2.1),“E”代表使用的是基本的等价关系(对应2.7等值演算)。例如:T,(1),(2),I意思是对第一条和第二条公式运用蕴涵关系得出的逻辑结果

 3 反证法
3.1 原理

定义

定理

3.2 做题方法

做题步骤:

  1. 把结论的否定作为假设的前提加入到前提集合中
  2. 推出一个矛盾式

例题:证明P∨Q,P→R,Q→R=>R

  • 20
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值