【信号与系统第六章】14、拉普拉斯变换

一、拉氏变换公式

X(s)=F[x(t)e^{-\sigma t}]=\int_{-\infty }^{+\infty }x(t)e^{-st}dt    ,   s=\sigma +j\omega

反变换:

x(t)e^{-\sigma t}=F^{-1}[X(s)]=\frac{1}{2\pi }\int_{-\infty }^{+\infty }X(s)e^{j\omega t}d\omega

即  x(t)=\frac{1}{2\pi }\int_{-\infty }^{+\infty }X(s)e^{st}d\omega =\frac{1}{2\pi j}\int_{\sigma -j\infty }^{\sigma +j\infty }X(s)e^{st}ds

本质:傅里叶变换需要满足的条件之一“绝对可积”限制太严格,所以为削弱这个条件,把x(t)乘一个衰减因子。

二、两个重要的拉氏变换

e^{-at}u(t)\overset{L}{\rightarrow}\frac{1}{s+a}           ,  (Re(s)>-a)

-e^{-at}u(-t)\overset{L}{\rightarrow}\frac{1}{s+a}     ,  (Re(s)<-a)

1、证明

第1个

L[e^{-at}u(t)]=\int_{-\infty }^{+\infty }e^{-at}u(t)e^{-st}dt=\int_{0}^{+\infty }e^{-(s+a)t}dt

=-\frac{1}{s+a}e^{-(s+a)t}|_{t=0}^{+\infty }

=\frac{1}{s+a}-\frac{1}{s+a}e^{-(s+a).(+\infty )}

=\frac{1}{s+a}-\frac{1}{s+a}e^{-(a+\sigma ).(+\infty )}e^{-(j\omega ).(+\infty )}

当且仅当 \sigma +a>0 即 \sigma >-a 时,收敛。所以收敛域为(Re(s)>-a)

第2个

L[-e^{-at}u(-t)]=\int_{-\infty }^{+\infty }-e^{-at}u(-t)e^{-st}dt=\int_{-\infty }^{0}-e^{-(s+a)t}dt

=\frac{1}{s+a}e^{-(s+a)t}|_{t=-\infty }^{0}

=\frac{1}{s+a}-\frac{1}{s+a}e^{-(s+a).(-\infty )}

=\frac{1}{s+a}-\frac{1}{s+a}e^{(a+\sigma ).(+\infty )}e^{(j\omega ).(+\infty )}

当且仅当 \sigma +a<0 即 \sigma <-a 时,收敛。所以收敛域为(Re(s)<-a)

2、总结

注:本图圈2中-e^{-at}u(-t)的图像是错的,a>0时,他应该是发散的,即

3、本质

1、对于 e^{-at}u(t) ,在a>0时,不乘衰减因子,他也是衰减的,并且它的衰减还有一个裕度,因此他还可以乘一个在-a<\sigma <0范围内的发散因子e^{-\sigma t},当然当乘以一个衰减因子时他会更衰减。所以它的收敛域是(Re(s)>-a)

2、对于 -e^{-at}u(-t) ,在a>0时,不乘衰减因子,他是发散的,并且它的发散还有一个严重度,因此他乘一个小的在-a<\sigma <0范围内的收敛因子e^{-\sigma t}时仍是发散的,当然当乘以一个大的在\sigma <-a范围内的衰减因子时才是收敛的。所以它的收敛域是(Re(s)<-a)

4、例题

(1)

(2)

三、拉氏变换收敛域性质



四、常见信号的拉普拉斯变换

圈7圈8使用s域平移性质可以得出。

圈9由s域微分性质可证明:

圈10是在圈9的基础上再用s域平移性质。

五、拉普拉斯变换的性质

1、线性性质

线性组合后收敛域可能会增大,如下例:

2、时域平移性质

收敛域不变

证明

3、s域平移性质

本质:收敛域变化,不妨令a>0,则e^{at}相当于一个发散因子,当乘以一个e^{-\sigma t}的收敛因子时要想让函数收敛。那么此时的(\sigma -a)需要与原\sigma的效果相同。故收敛域由R变为了R+Re(a)

举例

4、尺度变换

5、时域微分

收敛域扩大的例子:

微分后变成时限信号,那么微分后的信号的收敛域就是全平面。

6、s域微分

收敛域不变,tx(t)后无论t是让x(t)衰减还是发散,他都是无法与指数形式的e^{-\sigma t}相比的,微小的\sigma的变换就可以抵消掉所有t的影响。所以tx(t)后不改变收敛域。

7、卷积性质

收敛域扩大的例子:

8、时域积分性质

六、拉普拉斯变换初值定理与终值定理

七、周期信号的拉普拉斯变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值