一文彻底搞懂大模型 - RAG(检索、增强、生成)

在大模型的应用中,RAG(Retrieval Augmented Generation,检索增强生成)成为越来越受关注的技术。它就像是大模型的 “智慧助手”,弥补了大模型在知识时效性和准确性上的短板。下面,我们就一起深入探究,彻底搞懂 RAG 究竟是什么,以及它是如何发挥作用的。

请添加图片描述

RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索技术与语言生成模型的人工智能技术。该技术通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力,如问答、文本摘要、内容生成等。RAG模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。

请添加图片描述

一、为什么需要 RAG?—— 大模型的 “知识短板”

大模型虽然强大,但它也有 “弱点”。由于大模型是基于历史数据训练的,无法实时获取最新信息,比如最新的政策法规、突发新闻事件等。此外,在处理专业领域知识时,大模型可能因为训练数据不足,给出不准确的回答。例如,在医学领域,大模型如果没有学习到最新的治疗方案,就可能给出过时的建议。

RAG 的出现,就是为了解决这些问题。它让大模型在生成内容时,能够实时检索外部知识,就像随时查阅最新的 “百科全书”,从而提升回答的准确性和时效性。

二、RAG 的核心组件和工作流程

RAG 主要由三个核心部分组成:检索模块、增强模块和生成模块,每个部分都各司其职,协同完成任务。

  1. 检索模块:这是 RAG 的 “信息侦察兵”。当用户提出问题后,检索模块会根据问题的关键词和语义,在预先构建的知识库(如企业文档库、行业数据库、新闻资讯库等)中快速检索相关信息。这个过程类似于在图书馆中根据书名、关键词查找书籍,只不过 RAG 的检索速度更快、范围更广。检索模块通常会使用向量检索技术,将问题和知识库中的文档都转化为向量,通过计算向量之间的相似度,找出最相关的文档片段。

  2. 增强模块:检索到的信息可能存在冗余、噪声或者与问题的关联不够紧密的情况,这时就需要增强模块来 “加工” 信息。增强模块会对检索到的文档片段进行筛选、清洗和重新组织,提取出关键信息,并将其整合为更适合输入到生成模块的格式。比如,去除文档中的无关段落,对专业术语进行解释,让信息更加简洁明了、逻辑清晰。

  3. 生成模块:有了增强模块处理后的 “优质信息”,生成模块就像一位 “作家”,基于大模型的能力,结合这些信息生成回答。它会根据问题的语境和需求,将检索到的知识与大模型自身的语言理解和生成能力相结合,输出准确、流畅的答案。

请添加图片描述

整个 RAG 的工作流程就像一场接力赛,检索模块先 “起跑” 获取信息,增强模块 “接力” 优化信息,最后生成模块 “冲刺” 给出答案。

三、RAG 的优势

  1. 提升知识准确性:通过实时检索外部知识库,RAG 能够引入最新、最准确的知识,避免大模型 “一本正经地胡说八道”。比如在金融领域,RAG 可以结合最新的市场数据和政策解读,为投资者提供更可靠的建议。

  2. 降低幻觉问题:大模型有时会生成与事实不符的内容,也就是所谓的 “幻觉”。RAG 因为有外部知识的支撑,能够有效减少这种情况的发生,让回答更有依据。

  3. 灵活适应不同领域:企业可以根据自身需求,构建专属的知识库,使 RAG 在特定领域发挥作用。无论是法律、医疗、教育,还是制造业,只要更新知识库,RAG 就能快速适应新的知识场景。

  4. 减少训练成本:相比重新训练大模型以更新知识,RAG 只需更新和维护外部知识库,成本更低、效率更高。

四、RAG 的典型应用场景

  1. 企业智能客服:企业可以将产品手册、常见问题解答等文档构建成知识库,当客户咨询时,RAG 系统能够快速检索相关信息,结合大模型生成准确、个性化的回答,提升客户服务效率和质量。

  2. 专业领域问答:在法律领域,RAG 可以检索最新的法律法规和案例,为律师提供参考;在医疗领域,结合医学文献和临床指南,辅助医生诊断和制定治疗方案。

  3. 内容创作与推荐:媒体机构利用 RAG 检索最新的新闻事件和背景资料,辅助记者生成新闻报道;电商平台通过 RAG 检索商品信息和用户评价,为用户提供更精准的商品推荐文案。

请添加图片描述

五、RAG 面临的挑战和解决方案

  1. 检索准确性问题:如果检索模块没有找到最相关的信息,或者找到了错误的信息,就会影响最终答案的质量。解决方法是优化检索算法,采用更先进的向量表示和相似度计算方法,同时不断丰富和优化知识库的内容和结构。

  2. 信息整合难题:增强模块需要将多个文档片段的信息整合起来,形成逻辑连贯的内容,如果整合不好,可能导致生成的答案混乱。可以通过自然语言处理技术,对信息进行语义分析和结构化处理,提高信息整合的效率和质量。

  3. 计算资源消耗:RAG 在检索和生成过程中都需要消耗大量计算资源,尤其是在处理大规模知识库和复杂问题时。可以采用分布式计算、缓存技术等,提高系统的性能和资源利用率。

RAG 作为大模型的重要增强技术,为大模型的应用开辟了新的道路。随着技术的不断发展和完善,RAG 将在更多领域发挥重要作用,为我们带来更智能、更准确的服务和体验。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### RAG模型概述 RAG(Retrieval-Augmented Generation)是一种融合了检索增强机制的生成型语言模型,由Facebook AI研究院(FAIR)提出。这种架构通过结合传统的基于检索的方法和现代的语言生成技术来提升自然语言处理任务的效果[^3]。 ### 工作原理详解 #### 数据获取阶段 在数据准备过程中,RAG利用外部知识库作为补充资源。当接收到输入查询时,系统首先会在预先构建的知识图谱或其他形式的大规模语料库中执行信息检索操作,找到最有可能帮助完成当前对话或任务的相关片段。 #### 动态上下文集成 不同于静态预训练模式下的纯生成方式,在线检索到的具体实例会被即时融入到解码器端口处,使得每次预测都能依据最新获得的真实世界证据来进行调整优化。这一特性赋予了RAG更强的情境适应能力,尤其是在面对开放领域问答、多轮次交互式聊天等复杂场景下表现尤为突出。 #### 双重评分机制 为了确保最终输出的质量,RAG采用了两步走策略:先是从候选集中挑选出若干高质量的回答选项;再经过一轮精细评估后决定最佳回复方案。具体来说就是分别计算每条建议得分——一方面考量它与原始请求之间的匹配度;另一方面也要顾及内部连贯性和逻辑一致性等因素。 ```python def rag_model_inference(query, knowledge_base): retrieved_docs = retrieve_relevant_documents(query, knowledge_base) generated_responses = [] for doc in retrieved_docs: response = generate_response_based_on_document(doc) generated_responses.append(response) best_response = select_best_response(generated_responses) return best_response ``` ### 应用案例分析 实际应用方面,《大模型RAG实战:RAG原理、应用与系统构建》一书中提供了丰富的实践指导和技术细节解析,涵盖了从理论基础到工程实现再到部署上线全流程的内容介绍。对于希望深入了解并掌握这项前沿技术的研究人员而言,这本书籍无疑是一个宝贵的学习资料来源[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值