本人github
在这段代码中,permutation
是一个由 numpy
库提供的函数 numpy.random.permutation
生成的数组。这个函数的作用是生成一个随机排列的整数序列。在机器学习和数据处理中,它常用于打乱数据集的顺序,以确保数据的随机性,这有助于提高模型训练的泛化能力并减少过拟合。
具体来说,在代码中:
permutation = np.random.permutation(len(train_images))
这行代码生成了一个随机排列的整数序列,序列的长度与 train_images
(训练图像数组)的长度相同。这意味着如果 train_images
有1000个图像,permutation
就是一个包含从0到999的整数的随机排列数组。
然后,这个排列被用来打乱训练数据和标签:
train_images = train_images[permutation]
train_labels = train_labels[permutation]
通过这种方式,训练图像和对应的标签保持同步,但它们的顺序被随机打乱。这是机器学习数据预处理中常用的技术,可以帮助避免训练过程中的某些偏差,特别是当原始数据可能有某种顺序排列时(例如按类别或时间排序)。