permutation是什么

文章讲述了如何使用numpy库的random.permutation函数在机器学习中随机打乱数据集,以增强模型的泛化能力并减少过拟合。通过打乱训练图像和标签的顺序,确保数据随机性,避免训练过程中的偏差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人github

在这段代码中,permutation 是一个由 numpy 库提供的函数 numpy.random.permutation 生成的数组。这个函数的作用是生成一个随机排列的整数序列。在机器学习和数据处理中,它常用于打乱数据集的顺序,以确保数据的随机性,这有助于提高模型训练的泛化能力并减少过拟合。

具体来说,在代码中:

permutation = np.random.permutation(len(train_images))

这行代码生成了一个随机排列的整数序列,序列的长度与 train_images(训练图像数组)的长度相同。这意味着如果 train_images 有1000个图像,permutation 就是一个包含从0到999的整数的随机排列数组。

然后,这个排列被用来打乱训练数据和标签:

train_images = train_images[permutation]
train_labels = train_labels[permutation]

通过这种方式,训练图像和对应的标签保持同步,但它们的顺序被随机打乱。这是机器学习数据预处理中常用的技术,可以帮助避免训练过程中的某些偏差,特别是当原始数据可能有某种顺序排列时(例如按类别或时间排序)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我想要身体健康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值