生成对抗网络 | Python实现GANformer生成对抗神经网络结合Transformers
效果一览
文章概述
生成对抗网络 | Python实现GANformer生成对抗神经网络结合Transformers
这是 GANformer 模型的实现,这是一种新颖高效的转换器,用于图像生成任务。 该网络采用二分结构,可以实现跨图像的远程交互,同时保持线性效率的计算,可以轻松扩展到高分辨率合成。 该模型迭代地将信息从一组潜在变量传播到不断变化的视觉特征,反之亦然,以支持根据彼此进行改进,并鼓励出现对象和场景的组合表示。 与经典的 transformer 架构相比,它利用乘法积分,允许灵活的基于区域的调制,因此可以被视为成功的 StyleGAN 网络的推广。