生成对抗网络 | Python实现GANformer生成对抗神经网络结合Transformers

16 篇文章 35 订阅 ¥19.90 ¥99.00
本文介绍了使用Python实现GANformer,一种将生成对抗网络与Transformer架构结合的模型,适用于图像生成任务。GANformer通过二分结构实现跨图像远程交互,保持线性效率,并能扩展到高分辨率合成。它包括映射网络和合成网络,其中注意力机制在潜在特征与图像特征间交互,改善了生成多目标场景图像的能力。鉴别器则负责区分真实与生成的图像,也可利用注意力机制提升性能。
摘要由CSDN通过智能技术生成

生成对抗网络 | Python实现GANformer生成对抗神经网络结合Transformers

效果一览

1
2

文章概述

生成对抗网络 | Python实现GANformer生成对抗神经网络结合Transformers
这是 GANformer 模型的实现,这是一种新颖高效的转换器,用于图像生成任务。 该网络采用二分结构,可以实现跨图像的远程交互,同时保持线性效率的计算,可以轻松扩展到高分辨率合成。 该模型迭代地将信息从一组潜在变量传播到不断变化的视觉特征,反之亦然,以支持根据彼此进行改进,并鼓励出现对象和场景的组合表示。 与经典的 transformer 架构相比,它利用乘法积分,允许灵活的基于区域的调制,因此可以被视为成功的 StyleGAN 网络的推广。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值