图神经网络(GNN)和Transformer的结合是近年来的研究热点。这类结合不仅能够让两者发挥各自的优势,还能推动模型的创新,提高处理图数据的效率和性能。
具体点讲,通过利用Transformer,我们可以扩展GNN的感受野,包括那些距离中心节点较远的相关节点。相对的,GNN也可以帮助Transformer捕捉复杂的图拓扑信息,并从相邻区域高效地聚合相关节点。
目前,基于Transformer的GNN和图Transformer是GNN+Transformer的两大关键结合方式,这其中有不少个人认为很值得学习的成果。比如GNN 嵌套 Transformer 模型GraphFormers、仅使用一层全局注意力的简化图Transformer模型SGFormer。
TransGNN
TransGNN: Harnessing the Collaborative Power of Transformers and Graph Neural Networks for Recommender Systems
方法:论文提出了TransGNN模型,通过交替使用Transformer和GNN层来相互增强它们的能力。TransGNN利用Transformer层扩大了接受野,并将信息聚合从边缘中解耦,从而增强了GNN的信息传递能力。
为了有效捕捉图结构信息,作者们设计了细致的位置编码,并将其集成到GNN层中,以将结构知识编码到节点属性中,从而提高了Transformer在图上的性能。
为了提高效率,作者们提出了对Transformer进行最相关节点的采样,并提出了两种高效的样本更新策略,以减少复杂性。
创新点:
-
引入了一种新颖的模型TransGNN,其中Transformer和GNN协同合作。Transformer扩大了GNN的感受野,而GNN捕捉关键的结构信息以增强Transformer的性能。
-
为了解决复杂性的挑战,作者引入了一种采样策略以及两种更新相关样本的高效方法。
-
对TransGNN的表达能力和计算复杂度进行了理论分析,揭示了TransGNN相对于具有小额外计算开销的GNN来说具有更大的潜力。
GraphFormers
GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph
方法:论文提出了一种名为GraphFormers的模型架构,用于文本图的表示学习。该模型将GNN和预训练语言模型相结合,通过将GNN嵌入到语言模型的Transformer层中,将文本编码和图聚合融合为一个迭代的流程,从而更准确地理解每个节点的语义。此外,还引入了渐进学习策略,通过对操纵过的数据和原始数据进行逐步训练,增强了模型整合图信息的能力。
创新点:
-
图神经网络嵌套Transformer(GraphFormers):它结合了图神经网络(GNNs)和语言模型。在GraphFormers中,GNN组件与语言模型的Transformer层并行设置,允许文本编码和图聚合的融合。这种架构能够从全局角度精确理解每个节点的语义,从而产生高质量的文本图表示。
-
两阶段渐进学习:为了增强模型整合来自图的信息的能力,作者引入了一种两阶段渐进学习策略。在第一阶段,模型在被操纵的数据上进行训练,其中节点被随机污染,迫使模型利用全部输入节点。在第二阶段,模型在原始数据上训练以适应目标分布。这种渐进学习策略提高了GraphFormers的表示质量。
-
单向图注意力:为了减少不必要的计算,作者引入了单向图注意力。只需要中心节点参考其邻居,而邻居节点保持独立编码。这允许缓存和重用现有邻居的编码结果,显著节省了计算成本。
Exphormer
EXPHORMER: Sparse Transformers for Graphs
方法:本文介绍了一种名为EXPHORMER的框架,用于构建强大且可扩展的图变换器。EXPHORMER采用两种机制:虚拟全局节点和扩展图,这些数学特性使得图变换器的复杂度仅与图的大小成线性关系,并且能够证明所得到的变换器模型具有理想的理论特性。
创新点:
-
EXPHORMER是一种新的稀疏图转换器架构,具有可扩展性和竞争力的准确性。
-
EXPHORMER基于两种机制,即虚拟全局节点和扩展图,实现了稀疏注意机制。
-
EXPHORMER的数学特性包括谱扩展、伪随机性和稀疏性,使得图转换器具有与图规模线性复杂度和理想的理论特性。
-
在GraphGPS框架中使用EXPHORMER可以产生在各种图数据集上具有竞争力的实证结果,包括在三个数据集上的最新结果。
-
EXPHORMER可以扩展到比以前的图转换器架构更大的图数据集。
SGFormer
SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations
方法:本文提出了一种名为SGFormer的模型,通过一个简单的全局注意力模型来学习大图上的节点表示。该模型具有线性的时间和空间复杂度,能够高效地处理大规模图。
创新点:
-
SGFormer模型:
-
提出了SGFormer模型,它是一种简化的图Transformer模型,只使用了单层单头的注意力机制。
-
SGFormer模型具有线性的时间和空间复杂度,能够有效地处理从数千到数十亿个节点的大规模图数据。
-
SGFormer模型在12个图数据集上取得了非常有竞争力的性能,比其他强大的图神经网络和最先进的图Transformer模型都要好。
-
-
单层注意力模型的表达能力:
-
通过将Transformer层与信号去噪问题相连接,证明了单层注意力模型可以产生与多层注意力相同的去噪效果。
-
单层注意力模型可以实现最速下降,表明它具备足够的表达能力,能够学习全局信息。
-