多维时序预测 | Matlab基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)多变量时间序列预测,多列变量输入

本文介绍了使用Matlab基于卷积神经网络和长短期记忆网络结合注意力机制进行多变量时间序列预测的方法。文章包含了效果展示、代码片段及参考资料,适用于2021版及以上Matlab用户学习。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

文章概述

多维时序预测 | Matlab基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)多变量时间序列预测,多列变量输入
评价指标包括:MAE、MBE和R2等,代码质量极高,方便学习和替换数据。要求2021版本及以上。

部分源码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值