ubuntu20.04中配置AMD显卡(6600)pytorch

第一步下载amd安装工具

进入网站下载5.4.2的amd_gpu安装工具,5.4.2版本是需要与后面的pytorch版本对应。

Index of /amdgpu-install/5.4.2/ubuntu/focal/

下载完成,安装包移动到主目录下,运行命令安装

sudo apt-get install ./amdgpu-install_5.4.50402-1_all.deb

第二步安装rocm等待安装成功

sudo amdgpu-install --usecase=rocm,hip,mllib,dkms 

可以查看是否安装成功,没有报错就成功了:

sudo /opt/rocm/bin/rocminfo
sudo /opt/rocm/opencl/bin/clinfo

第三步安装pytorch

pytorch官网PyTorch选择自己设备的情况,运行命令行,这里面选择ROCM5.4.2,注意5.4.2需要与amdgpu版本相同。

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2

没有pip3的先安装pip3

第四步配置系统环境

#添加环境
 

sudo usermod -a -G video $LOGNAME
sudo usermod -a -G render $LOGNAME 

#在文件执行
在主目录下ctrl+h后,打开.bashrc文件
 

export HSA_OVERRIDE_GFX_VERSION=10.3.0
export LD_LIBRARY_PATH=/opt/rocm/lib
source ~/.bashrc#通重新执行刚修改的初始化文件 

然后重启电脑。

第五部检验,终端输入下面代码,并返回true成功

python3
import torch
torch.cuda.is_available()

参考:

AMD GPU驱动,ROCM,Pytorch安装教程(A卡6700xt) - 哔哩哔哩

AMD显卡使用Pytorch深度学习配置(RX6600 ubuntu20.04为例)-2022.9.20 - 知乎AMD显卡安装Pytorch

<think>好的,我现在需要帮助用户找到在Ubuntu 20.04上安装支持GPU的PyTorch的指南。根据用户提供的引用资料,特别是引用[1]和引用[2],我需要整合这些信息,并确保步骤正确且符合用户的需求。 首先,用户提到他们参考的两个引用。引用[1]提到安装torchaudio的特定wheel文件,而引用[2]详细描述了安装过程,包括遇到的CUDA版本问题。用户可能在安装过程中遇到了类似的问题,比如CUDA版本不匹配,或者如何验证安装是否成功。 接下来,我需要按照用户的要求,生成一个结构清晰的安装指南。步骤应该包括系统要求、安装显卡驱动、CUDA、cuDNN,然后通过pip安装PyTorch,最后验证安装。同时,需要注意用户提到的CUDA版本问题,即PyTorch可能不支持最新的CUDA 12.0,但用户引用中的解决方法是使用CUDA 11.8,并指出只要CUDA版本大于等于PyTorch所需的即可。 在整理步骤时,要确保每个部分都正确无误。例如,安装显卡驱动可以使用ubuntu-drivers工具自动推荐,或者从NVIDIA官网下载。安装CUDA时,用户需要下载runfile并按照指示安装,同时注意不安装已存在的驱动。cuDNN的安装需要注册NVIDIA账号,下载对应的deb包,这可能对新手来说有点复杂,需要详细说明。 安装PyTorch部分,用户需要访问官网获取正确的pip命令。根据引用[2],用户可能需要选择CUDA 11.8的版本,即使系统安装的是CUDA 12.0,因为PyTorch可能尚未支持。这里需要明确说明用户应选择哪个版本,并给出正确的命令。 验证部分,用户需要运行Python代码检查CUDA是否可用,以及打印PyTorch版本和CUDA版本。这部分需要确保用户能够正确执行这些命令,避免常见的错误,比如未导入torch模块或拼写错误。 最后,生成相关问题,帮助用户进一步解决可能遇到的疑问,比如如何检查CUDA版本、安装失败怎么办、使用Docker安装等。 需要确保所有技术术语准确,步骤正确,并且符合用户的实际操作环境。同时,引用用户提供的参考资料,确保信息的可靠性。如果有不确定的地方,比如CUDA版本兼容性的详细情况,可能需要进一步查阅PyTorch官方文档,但根据用户提供的引用,可以确认CUDA 12.0可以使用PyTorch为CUDA 11.8构建的版本,因为兼容性较好。</think>### Ubuntu 20.04 PyTorch GPU 安装指南 #### 一、系统要求 1. **操作系统**: Ubuntu 20.04 LTS 2. **Python**: 建议 Python 3.8/3.9(需提前安装) 3. **硬件**: NVIDIA 显卡(需支持 CUDA) --- #### 二、安装步骤 ##### 1. 安装显卡驱动 ```bash # 自动检测并安装推荐驱动 sudo ubuntu-drivers autoinstall # 或手动指定驱动版本(例如470) sudo apt install nvidia-driver-470 ``` 重启系统后验证驱动是否生效: ```bash nvidia-smi # 输出GPU信息即为成功 ``` ##### 2. 安装CUDA工具包 从[NVIDIA官网](https://developer.nvidia.com/cuda-toolkit-archive)下载**CUDA 11.8**的runfile(与PyTorch兼容性最佳)[^2]: ```bash wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run sudo sh cuda_11.8.0_520.61.05_linux.run ``` *安装时取消勾选显卡驱动选项(若已安装驱动)* ##### 3. 安装cuDNN 从[NVIDIA开发者网站](https://developer.nvidia.com/cudnn)下载**cuDNN 8.x for CUDA 11.x**的deb包,执行: ```bash sudo dpkg -i cudnn-local-repo-ubuntu2004-8.x.x.x_1.0-1_amd64.deb sudo apt update sudo apt install libcudnn8 ``` ##### 4. 安装PyTorch 通过PyTorch官网获取安装命令(选择CUDA 11.8版本): ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` --- #### 三、验证安装 ```python import torch print(torch.__version__) # 输出PyTorch版本 print(torch.cuda.is_available()) # 应返回True print(torch.version.cuda) # 显示CUDA版本(应为11.8) ``` --- #### 四、常见问题 1. **CUDA版本不匹配**:PyTorch官方预编译包最高支持CUDA 11.8,但实际可兼容更高版本(如12.x) 2. **依赖冲突**:建议使用虚拟环境(如`venv`或`conda`)隔离安装 3. **下载缓慢**:可使用国内镜像源加速(例如清华源) ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值