【路径规划】基于模拟退火结合遗传算法全向AGV路径规划附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

随着自动化技术的不断发展,全向自动引导车(AGV)在物流、制造和仓储领域的应用越来越广泛。而AGV路径规划作为AGV系统中的核心技术之一,对于提高AGV的运行效率和安全性具有重要意义。在路径规划领域,模拟退火算法和遗传算法是两种常用的优化算法,它们在不同领域都取得了良好的效果。本文将介绍基于模拟退火结合遗传算法的全向AGV路径规划方法。

首先,我们需要了解模拟退火算法和遗传算法的基本原理。模拟退火算法是一种全局优化算法,模拟了固体退火的过程,通过接受较差的解以避免陷入局部最优解,最终找到全局最优解。而遗传算法则是一种模拟生物进化过程的优化算法,通过选择、交叉和变异等操作,不断优化种群中的个体,以找到最优解。

基于模拟退火结合遗传算法的全向AGV路径规划方法主要分为以下几个步骤:首先,利用模拟退火算法对初始路径进行优化,得到一个较好的路径解;然后,将该路径解作为遗传算法的初始种群,利用遗传算法对路径进行进一步优化,得到最终的优化路径。在遗传算法的操作中,需要设计适合AGV路径规划问题的选择、交叉和变异操作,以确保算法能够快速收敛到最优解。

与传统的AGV路径规划方法相比,基于模拟退火结合遗传算法的路径规划方法具有以下优势:首先,能够充分利用模拟退火算法的全局优化能力和遗传算法的并行搜索能力,提高了路径规划的效率和精度;其次,能够避免陷入局部最优解,提高了路径规划的鲁棒性和稳定性;最后,能够灵活应对不同的AGV路径规划问题,具有较强的通用性和适用性。

总的来说,基于模拟退火结合遗传算法的全向AGV路径规划方法在提高路径规划效率和精度方面具有显著优势,对于提高AGV系统的运行效率和安全性具有重要意义。随着自动化技术的不断发展,相信这种路径规划方法将在AGV领域得到更广泛的应用和推广。

📣 部分代码

function map=randmap(mapSize,threshold)%map=RANDMAP(mapSize,threshold)是一个随机生成指定尺寸以及障碍物密度的地图的函数%mapSize是地图网格数量,也就是地图大小,threshold是障碍物的密度值map_value = rand(mapSize-1,mapSize-1);map_value = double(map_value > threshold) * 255;map_value = map_value  / 255; map = ones(mapSize,mapSize);map(1:end-1,2:end) = map_value;map=1-map;end

⛳️ 运行结果

🔗 参考文献

[1] 谢云峰,黄美发,钟艳如,等.基于模拟退火遗传算法的拆卸路径规划[J].机械工程师, 2007(1):3.DOI:10.3969/j.issn.1002-2333.2007.01.044.

[2] 袁建平,李晨熹,张博,等.一种基于模拟退火遗传算法的机械臂路径规划方法:CN201810837871.7[P].CN108858198A[2023-12-12].

[3] 谢云峰黄美发钟艳如匡兵.基于模拟退火遗传算法的拆卸路径规划[J].机械工程师, 2007, 000(001):103-105.

[4] 苑光明,翟云飞,丁承君,等.基于改进遗传算法的AGV路径规划[J].北京联合大学学报, 2018, 32(1):5.DOI:10.16255/j.cnki.ldxbz.2018.01.011.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值