基于支持向量机的光伏功率时间序列预测(libsvm)(附MATLAB代码)

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

随着可再生能源的重要性日益凸显,光伏发电作为一种清洁、可持续的能源形式,受到了广泛关注。在光伏发电系统中,对光伏功率进行准确预测是至关重要的,这有助于优化能源管理、提高发电效率以及降低成本。在这篇文章中,我们将探讨如何利用支持向量机(Support Vector Machine, SVM)来进行光伏功率时间序列的预测,以及libsvm在这一过程中的应用。

光伏功率时间序列预测的挑战

光伏功率的时间序列预测是一项复杂的任务,因为光伏发电受到诸多影响因素的影响,包括天气、季节、日照强度、温度等。因此,准确预测光伏功率需要考虑这些因素的综合影响,以及光伏系统本身的特性。传统的时间序列预测方法在处理这些复杂的非线性关系时可能表现不佳,因此需要一种更加灵活、适应性更强的方法来解决这一问题。

支持向量机(SVM)在光伏功率预测中的应用

支持向量机是一种强大的机器学习方法,它在处理复杂的非线性关系和高维数据时表现出色。在光伏功率时间序列预测中,SVM能够通过构建合适的核函数来捕捉光伏功率与影响因素之间的复杂关系,从而实现准确的预测。与传统的时间序列预测方法相比,SVM具有更好的泛化能力和适应性,能够更好地处理复杂的光伏功率预测问题。

libsvm在光伏功率预测中的应用

libsvm是一个广泛应用于SVM的开源库,它提供了丰富的功能和灵活的接口,使得SVM模型的构建和应用变得更加便捷。在光伏功率时间序列预测中,利用libsvm可以快速构建并优化SVM模型,从而实现对光伏功率的准确预测。通过调整不同的参数和核函数,可以进一步提高预测精度,使得模型更加符合实际情况。

结论

光伏功率时间序列预测是光伏发电系统中的关键问题,而支持向量机以及其相关的开源库libsvm为解决这一问题提供了强大的工具。通过充分利用SVM的非线性建模能力和libsvm的灵活性,可以实现对光伏功率的精准预测,从而为光伏发电系统的优化运行和管理提供有力支持。随着机器学习和人工智能技术的不断发展,我们相信SVM及其相关方法在光伏功率预测领域将发挥越来越重要的作用,为清洁能源的发展做出更大的贡献。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 粟然,柯拥勤,张孝乾,等.基于时序-支持向量机的风电场发电功率预测[J].中国电力, 2012, 45(001):64-68.DOI:10.3969/j.issn.1004-9649.2012.01.015.

[2] 马金虎,薛家祥,黄谱.一种基于支持向量机的光伏发电功率预测方法:CN201711473483.7[P].CN108074019A[2023-12-25].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值