✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 齿轮损伤概述
齿轮是机械传动系统中必不可少的重要部件,其主要作用是传递运动和动力,并改变运动方向。齿轮在工作过程中会受到多种因素的影响,如磨损、疲劳、腐蚀等,导致齿轮出现损伤。齿轮损伤会影响机械传动系统的正常运行,甚至可能导致机械故障。因此,对齿轮损伤进行及时有效的识别具有重要的意义。
2. BP神经网络概述
BP神经网络是一种常用的前馈神经网络,它具有强大的非线性映射能力,能够处理复杂的数据。BP神经网络由输入层、隐含层和输出层组成。输入层负责接收输入数据,隐含层负责进行数据处理,输出层负责产生输出结果。BP神经网络的学习过程分为正向传播和反向传播。正向传播是指从输入层到输出层的信号传播过程,反向传播是指从输出层到输入层的信号传播过程。在反向传播过程中,BP神经网络会根据输出误差调整网络权重,以使输出误差最小化。
3. 基于BP神经网络的齿轮损伤识别
基于BP神经网络的齿轮损伤识别方法是一种利用BP神经网络对齿轮损伤进行分类的方法。该方法首先需要对齿轮损伤数据进行预处理,然后将预处理后的数据输入到BP神经网络中。BP神经网络会对数据进行学习和训练,并最终生成一个分类模型。该分类模型可以用来对新的齿轮损伤数据进行分类。
4. 基于BP神经网络的齿轮损伤识别方法的步骤
基于BP神经网络的齿轮损伤识别方法的步骤如下:
-
数据预处理:对齿轮损伤数据进行预处理,包括数据清洗、数据归一化等。
-
网络初始化:初始化BP神经网络的权重和阈值。
-
正向传播:将预处理后的数据输入到BP神经网络中,并计算网络的输出。
-
反向传播:计算网络的输出误差,并根据输出误差调整网络的权重和阈值。
-
重复步骤3和步骤4,直到网络的输出误差达到最小值。
-
保存网络:将训练好的BP神经网络保存下来。
-
分类:将新的齿轮损伤数据输入到训练好的BP神经网络中,并得到分类结果。
5. 基于BP神经网络的齿轮损伤识别方法的优点
基于BP神经网络的齿轮损伤识别方法具有以下优点:
-
鲁棒性强:BP神经网络具有较强的鲁棒性,能够处理噪声数据和缺失数据。
-
非线性映射能力强:BP神经网络具有强大的非线性映射能力,能够处理复杂的数据。
-
泛化能力强:BP神经网络具有较强的泛化能力,能够对新的数据进行准确分类。
📣 部分代码
close all;
clear all;
clc;
N=10;
[FileName, PathName] = uigetfile({'*.xls','Excel File(*.xls)';...
'*.txt','TXT File(*.txt)';'*.*','All File(*.*)'},'选择文件');
str = [PathName, FileName]; % 获取文件的路径
train_x=[];
test_x=[];
for sheet=1:6
[data,date,f] = xlsread(str,sheet); % 读取所选文件
data1=data(:,2:end);
train_x=[train_x; data1(1:8,:)];
test_x=[test_x; data1(9:end,:)];
end
%%
%(1,0,0,0,0,0)对应第一种故障0.06
%(0,0,0,0,0,1)对应最后一种故障0.03
train_y=[];
temp=eye(6);
for i=1:6
train_y=[train_y;ones(8,1)*temp(i,:)];
⛳️ 运行结果
6. 结论
基于BP神经网络的齿轮损伤识别方法是一种有效的方法,能够对齿轮损伤进行准确分类。该方法具有鲁棒性强、非线性映射能力强和泛化能力强等优点。
🔗 参考文献
[1] 原子.基于广义局部曲率模态信息熵和BP神经网络的损伤识别方法[J].[2024-01-02].
[2] 马佶民.基于BP神经网络的阳逻长江大桥主缆损伤识别研究[D].华中科技大学,2007.