【BP分类Matlab】基于BP神经网络齿轮损伤识别附代码

本文介绍了齿轮损伤的概述,重点阐述了BP神经网络的工作原理及其在齿轮损伤识别中的应用。步骤包括数据预处理、网络初始化、正向传播和反向传播,以及这种方法的鲁棒性、非线性映射能力和泛化能力。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

1. 齿轮损伤概述

齿轮是机械传动系统中必不可少的重要部件,其主要作用是传递运动和动力,并改变运动方向。齿轮在工作过程中会受到多种因素的影响,如磨损、疲劳、腐蚀等,导致齿轮出现损伤。齿轮损伤会影响机械传动系统的正常运行,甚至可能导致机械故障。因此,对齿轮损伤进行及时有效的识别具有重要的意义。

2. BP神经网络概述

BP神经网络是一种常用的前馈神经网络,它具有强大的非线性映射能力,能够处理复杂的数据。BP神经网络由输入层、隐含层和输出层组成。输入层负责接收输入数据,隐含层负责进行数据处理,输出层负责产生输出结果。BP神经网络的学习过程分为正向传播和反向传播。正向传播是指从输入层到输出层的信号传播过程,反向传播是指从输出层到输入层的信号传播过程。在反向传播过程中,BP神经网络会根据输出误差调整网络权重,以使输出误差最小化。

3. 基于BP神经网络的齿轮损伤识别

基于BP神经网络的齿轮损伤识别方法是一种利用BP神经网络对齿轮损伤进行分类的方法。该方法首先需要对齿轮损伤数据进行预处理,然后将预处理后的数据输入到BP神经网络中。BP神经网络会对数据进行学习和训练,并最终生成一个分类模型。该分类模型可以用来对新的齿轮损伤数据进行分类。

4. 基于BP神经网络的齿轮损伤识别方法的步骤

基于BP神经网络的齿轮损伤识别方法的步骤如下:

  1. 数据预处理:对齿轮损伤数据进行预处理,包括数据清洗、数据归一化等。

  2. 网络初始化:初始化BP神经网络的权重和阈值。

  3. 正向传播:将预处理后的数据输入到BP神经网络中,并计算网络的输出。

  4. 反向传播:计算网络的输出误差,并根据输出误差调整网络的权重和阈值。

  5. 重复步骤3和步骤4,直到网络的输出误差达到最小值。

  6. 保存网络:将训练好的BP神经网络保存下来。

  7. 分类:将新的齿轮损伤数据输入到训练好的BP神经网络中,并得到分类结果。

5. 基于BP神经网络的齿轮损伤识别方法的优点

基于BP神经网络的齿轮损伤识别方法具有以下优点:

  1. 鲁棒性强:BP神经网络具有较强的鲁棒性,能够处理噪声数据和缺失数据。

  2. 非线性映射能力强:BP神经网络具有强大的非线性映射能力,能够处理复杂的数据。

  3. 泛化能力强:BP神经网络具有较强的泛化能力,能够对新的数据进行准确分类。

📣 部分代码

close all;clear all;clc;N=10;[FileName, PathName] = uigetfile({'*.xls','Excel File(*.xls)';...    '*.txt','TXT File(*.txt)';'*.*','All File(*.*)'},'选择文件');str = [PathName, FileName];        % 获取文件的路径train_x=[];test_x=[];for sheet=1:6[data,date,f] = xlsread(str,sheet); % 读取所选文件data1=data(:,2:end);train_x=[train_x; data1(1:8,:)];test_x=[test_x; data1(9:end,:)];end%%%(1,0,0,0,0,0)对应第一种故障0.06%(0,0,0,0,0,1)对应最后一种故障0.03train_y=[];temp=eye(6);for i=1:6train_y=[train_y;ones(8,1)*temp(i,:)];

⛳️ 运行结果

6. 结论

基于BP神经网络的齿轮损伤识别方法是一种有效的方法,能够对齿轮损伤进行准确分类。该方法具有鲁棒性强、非线性映射能力强和泛化能力强等优点。

🔗 参考文献

[1] 原子.基于广义局部曲率模态信息熵和BP神经网络的损伤识别方法[J].[2024-01-02].

[2] 马佶民.基于BP神经网络的阳逻长江大桥主缆损伤识别研究[D].华中科技大学,2007.​

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值