KOA-CNN-GRU-selfAttention分类预测 | Matlab实现开普勒算法优化注意力机制卷积神经网络结合门控循环单元多特征分类预测(自注意力机制)

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

本文提出了一种基于开普勒算法优化注意力机制卷积神经网络结合门控循环单元(KOA-Attention-CNN-GRU)的模型,用于数据多维输入分类预测。该模型首先利用开普勒算法优化注意力机制,对输入数据进行特征提取和增强。然后,利用卷积神经网络进一步提取数据特征,并利用门控循环单元对时间序列数据进行建模。最后,利用全连接层对提取的特征进行分类。实验结果表明,该模型在多个数据集上取得了良好的分类效果,优于其他现有方法。

1. 介绍

随着数据量的不断增长,数据多维输入分类预测任务变得越来越重要。数据多维输入分类预测是指将多维数据输入到模型中,并输出一个分类结果。传统的数据多维输入分类预测方法主要包括决策树、支持向量机和随机森林等。这些方法虽然简单有效,但是对于高维数据和非线性数据,分类效果往往不佳。

近年来,深度学习技术在图像分类、自然语言处理等领域取得了巨大的成功。深度学习模型能够自动学习数据中的特征,并对数据进行分类。因此,深度学习模型也被广泛应用于数据多维输入分类预测任务。

本文提出了一种基于开普勒算法优化注意力机制卷积神经网络结合门控循环单元(KOA-Attention-CNN-GRU)的模型,用于数据多维输入分类预测。该模型首先利用开普勒算法优化注意力机制,对输入数据进行特征提取和增强。然后,利用卷积神经网络进一步提取数据特征,并利用门控循环单元对时间序列数据进行建模。最后,利用全连接层对提取的特征进行分类。

2. 模型结构

该模型主要由以下几个部分组成:

  • 开普勒算法优化注意力机制:该机制利用开普勒算法对输入数据进行特征提取和增强。

  • 卷积神经网络:该网络利用卷积核对输入数据进行特征提取。

  • 门控循环单元:该单元利用门控机制对时间序列数据进行建模。

  • 全连接层:该层利用全连接权重对提取的特征进行分类。

3. 模型训练

该模型的训练过程如下:

  1. 将输入数据输入到开普勒算法优化注意力机制中,进行特征提取和增强。

  2. 将提取的特征输入到卷积神经网络中,进行进一步的特征提取。

  3. 将提取的特征输入到门控循环单元中,进行时间序列数据的建模。

  4. 将提取的特征输入到全连接层中,进行分类。

  5. 计算模型的损失函数,并利用反向传播算法更新模型的权重。

  6. 重复步骤1-5,直到模型的损失函数收敛.

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 吴晓刚,阎洁,葛畅,等.基于改进GRU-CNN的风光水一体化超短期功率预测方法[J].中国电力, 2023, 56(9):178-186.

[2] 林靖皓,秦亮曦,苏永秀,et al.基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测[J].计算机应用, 2020, 40(S01):5.DOI:10.11772/j.issn.1001-9081.2019091537.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值