【多机器人】基于A星算法结合排队机制实现智能仓储机器人巡逻及避碰附matlab代码

本文介绍了一种利用A*算法和排队机制解决智能仓储机器人巡逻中的路径规划与避碰问题的方案。通过A*规划路径并结合FIFO队列管理多机器人请求,实现了高效且安全的巡逻。实验结果显示,该方法有效提高了巡逻效率和避免了碰撞。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文介绍了一种基于A星算法结合排队机制实现智能仓储机器人巡逻及避碰的方案。该方案利用A星算法规划机器人路径,并结合排队机制解决多机器人同时请求路径规划时的冲突问题,有效提高了巡逻效率和安全性。

1. 概述

随着电子商务的迅猛发展,智能仓储机器人得到了广泛应用。机器人巡逻是智能仓储系统中一项重要的功能,它可以及时发现仓库异常情况,并进行相应的处理。然而,多机器人同时进行巡逻时,可能会出现路径冲突问题,导致机器人碰撞或效率低下。

2. 相关工作

近年来,国内外学者对多机器人路径规划问题进行了大量的研究。其中,A星算法是一种常用的路径规划算法,它能够有效地找到起点到终点的最短路径。然而,A星算法并不能解决多机器人同时请求路径规划时的冲突问题。

为了解决多机器人路径冲突问题,一些学者提出了排队机制。排队机制可以保证机器人按顺序请求路径规划,避免同时请求路径规划导致的冲突。

3. 方案设计

本方案采用A星算法结合排队机制实现智能仓储机器人巡逻及避碰。具体方案设计如下:

3.1 A星算法路径规划

A星算法是一种基于启发式搜索的路径规划算法。它利用启发式函数估计当前节点到目标节点的距离,并选择具有最小估计距离的节点作为下一个扩展节点。

本方案中,A星算法用于规划机器人的巡逻路径。机器人首先获取仓库地图,并将其转换为网格地图。然后,机器人将起点和终点设置为网格地图上的两个节点,并利用A星算法计算最短路径。

3.2 排队机制

排队机制用于解决多机器人同时请求路径规划时的冲突问题。当多个机器人同时请求路径规划时,排队机制会将机器人按顺序排列,并依次为每个机器人规划路径。

本方案中,排队机制采用FIFO(先进先出)队列。当机器人请求路径规划时,它会加入队列的末尾。队列中的第一个机器人将获得路径规划服务,并执行巡逻任务。当第一个机器人完成巡逻任务后,队列中的下一个机器人将获得路径规划服务,并执行巡逻任务。

3.3 避碰机制

为了避免机器人碰撞,本方案采用避碰机制。避碰机制利用传感器检测周围环境,并根据传感器数据调整机器人的运动方向。

本方案中,避碰机制采用激光雷达传感器。激光雷达传感器可以扫描周围环境,并生成环境的三维点云数据。机器人根据点云数据判断周围是否有障碍物,并调整运动方向避开障碍物。

4. 实验结果

本方案在仿真环境中进行了测试。实验结果表明,该方案能够有效地规划机器人巡逻路径,并避免机器人碰撞。

实验中,设置了10个机器人进行巡逻。机器人巡逻区域为一个100米×100米的仓库。实验结果表明,机器人能够按照规划的路径进行巡逻,并且没有发生碰撞。

5. 结论

本方案采用A星算法结合排队机制实现智能仓储机器人巡逻及避碰,有效提高了巡逻效率和安全性。该方案可以应用于智能仓储系统,提高仓库管理效率。

6. 未来工作

未来,我们将继续研究多机器人路径规划问题,并探索更有效的路径规划算法和排队机制。此外,我们将研究如何将该方案应用于实际的智能仓储系统中。

⛳️ 运行结果

🔗 参考文献

[1] 陈赟,张续才,吴锦枫,等.一种基于改进蚁群算法的智能仓储机器人路径规划方法:202110500435[P][2024-04-19].

[2] 王一博.多机器人分布式编队控制算法研究与实现[D].哈尔滨工业大学[2024-04-19].DOI:CNKI:CDMD:2.1014.003445.

[3] 林俊.改进A^(*)算法的智能仓储物流机器人的路径规划[J].三明学院学报, 2021, 38(6):8.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值