✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文介绍了一种基于A星算法结合排队机制实现智能仓储机器人巡逻及避碰的方案。该方案利用A星算法规划机器人路径,并结合排队机制解决多机器人同时请求路径规划时的冲突问题,有效提高了巡逻效率和安全性。
1. 概述
随着电子商务的迅猛发展,智能仓储机器人得到了广泛应用。机器人巡逻是智能仓储系统中一项重要的功能,它可以及时发现仓库异常情况,并进行相应的处理。然而,多机器人同时进行巡逻时,可能会出现路径冲突问题,导致机器人碰撞或效率低下。
2. 相关工作
近年来,国内外学者对多机器人路径规划问题进行了大量的研究。其中,A星算法是一种常用的路径规划算法,它能够有效地找到起点到终点的最短路径。然而,A星算法并不能解决多机器人同时请求路径规划时的冲突问题。
为了解决多机器人路径冲突问题,一些学者提出了排队机制。排队机制可以保证机器人按顺序请求路径规划,避免同时请求路径规划导致的冲突。
3. 方案设计
本方案采用A星算法结合排队机制实现智能仓储机器人巡逻及避碰。具体方案设计如下:
3.1 A星算法路径规划
A星算法是一种基于启发式搜索的路径规划算法。它利用启发式函数估计当前节点到目标节点的距离,并选择具有最小估计距离的节点作为下一个扩展节点。
本方案中,A星算法用于规划机器人的巡逻路径。机器人首先获取仓库地图,并将其转换为网格地图。然后,机器人将起点和终点设置为网格地图上的两个节点,并利用A星算法计算最短路径。
3.2 排队机制
排队机制用于解决多机器人同时请求路径规划时的冲突问题。当多个机器人同时请求路径规划时,排队机制会将机器人按顺序排列,并依次为每个机器人规划路径。
本方案中,排队机制采用FIFO(先进先出)队列。当机器人请求路径规划时,它会加入队列的末尾。队列中的第一个机器人将获得路径规划服务,并执行巡逻任务。当第一个机器人完成巡逻任务后,队列中的下一个机器人将获得路径规划服务,并执行巡逻任务。
3.3 避碰机制
为了避免机器人碰撞,本方案采用避碰机制。避碰机制利用传感器检测周围环境,并根据传感器数据调整机器人的运动方向。
本方案中,避碰机制采用激光雷达传感器。激光雷达传感器可以扫描周围环境,并生成环境的三维点云数据。机器人根据点云数据判断周围是否有障碍物,并调整运动方向避开障碍物。
4. 实验结果
本方案在仿真环境中进行了测试。实验结果表明,该方案能够有效地规划机器人巡逻路径,并避免机器人碰撞。
实验中,设置了10个机器人进行巡逻。机器人巡逻区域为一个100米×100米的仓库。实验结果表明,机器人能够按照规划的路径进行巡逻,并且没有发生碰撞。
5. 结论
本方案采用A星算法结合排队机制实现智能仓储机器人巡逻及避碰,有效提高了巡逻效率和安全性。该方案可以应用于智能仓储系统,提高仓库管理效率。
6. 未来工作
未来,我们将继续研究多机器人路径规划问题,并探索更有效的路径规划算法和排队机制。此外,我们将研究如何将该方案应用于实际的智能仓储系统中。
⛳️ 运行结果
🔗 参考文献
[1] 陈赟,张续才,吴锦枫,等.一种基于改进蚁群算法的智能仓储机器人路径规划方法:202110500435[P][2024-04-19].
[2] 王一博.多机器人分布式编队控制算法研究与实现[D].哈尔滨工业大学[2024-04-19].DOI:CNKI:CDMD:2.1014.003445.
[3] 林俊.改进A^(*)算法的智能仓储物流机器人的路径规划[J].三明学院学报, 2021, 38(6):8.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类