【控制】基于滑模扰动观测器的滑模控制simulink实现

 ​✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

滑模控制作为一种非线性控制方法,因其对系统参数变化和外部扰动具有较强的鲁棒性,在实际工程中得到了广泛应用。然而,传统的滑模控制方法往往会带来抖振问题,影响系统性能。为了解决这一问题,研究人员提出了多种改进方法,其中基于滑模扰动观测器的滑模控制是一种有效的策略。

滑模控制的基本原理

滑模控制的基本原理是将系统状态轨迹通过一个特定的切换面引导到预定的滑动模态。滑动模态是一个满足特定条件的系统状态轨迹集合,在此模态下,系统可以实现期望的性能指标。切换面通常由一个非线性函数定义,该函数能够将系统状态空间划分为两个区域:一个区域对应系统应该保持的理想状态,另一个区域则对应系统应该避免进入的状态。

滑模控制器的设计目标是选择一个合适的切换面和控制律,使得系统状态轨迹能够快速地到达切换面,并在切换面上保持滑动。滑动模态的优点是,它对系统参数变化和外部扰动具有较强的鲁棒性。因为滑动模态的动态行为不受系统参数变化和外部扰动的影响,而是由切换面定义的。

滑模扰动观测器

滑模扰动观测器是解决传统滑模控制抖振问题的一种有效方法。它的基本思想是通过设计一个观测器来估计系统中的扰动,然后将估计的扰动信息反馈到控制律中,以补偿扰动对系统的影响。

滑模扰动观测器通常由以下部分组成:

  • 误差动力学模型:描述系统状态和扰动之间的关系。

  • 观测器结构:定义观测器的状态变量和输出。

  • 滑模观测器:利用滑模方法来估计系统中的扰动。

基于滑模扰动观测器的滑模控制

将滑模扰动观测器应用到滑模控制中,可以有效地解决抖振问题,同时保留滑模控制对参数变化和扰动的鲁棒性。具体步骤如下:

  1. 建立系统模型:描述系统的状态变量、输入和扰动之间的关系。

  2. 设计滑模扰动观测器:估计系统中的扰动。

  3. 设计滑模控制器:根据观测到的扰动信息,设计控制律以补偿扰动对系统的影响。

优点和缺点

基于滑模扰动观测器的滑模控制具有以下优点:

  • 抑制抖振:滑模扰动观测器可以有效地估计系统中的扰动,并将其补偿到控制律中,从而减小系统抖振。

  • 增强鲁棒性:滑模控制本身具有较强的鲁棒性,而滑模扰动观测器可以进一步增强系统对参数变化和扰动的鲁棒性。

  • 提高系统性能:滑模扰动观测器可以提高系统跟踪性能和稳定性。

同时,该方法也存在一些缺点:

  • 观测器设计难度:滑模扰动观测器的设计需要对系统模型有较深入的了解,且需要进行复杂的数学推导。

  • 计算量较大:滑模扰动观测器的计算量较大,可能会影响系统实时性。

应用领域

基于滑模扰动观测器的滑模控制在许多工程领域都有应用,例如:

  • 机器人控制:用于补偿机器人运动中的外部扰动,提高控制精度和稳定性。

  • 电力电子:用于补偿电力系统中的干扰,提高电力转换效率和稳定性。

  • 航空航天:用于控制飞行器姿态,提高飞行性能和安全性。

未来展望

随着对滑模控制和扰动观测器研究的不断深入,基于滑模扰动观测器的滑模控制将得到更广泛的应用。未来研究方向包括:

  • 研究更有效的扰动观测器设计方法,以提高观测器性能和鲁棒性。

  • 结合人工智能和机器学习技术,实现自适应滑模扰动观测器,以适应更复杂和未知的系统环境。

  • 研究滑模扰动观测器在更广泛的工程领域中的应用,例如智能制造、自动驾驶等。

结论

基于滑模扰动观测器的滑模控制是一种有效的控制策略,它能够有效地解决传统滑模控制抖振问题,同时保留其鲁棒性。该方法在实际工程中具有广泛的应用前景,并且未来将得到更深入的研究和应用。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值