✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. 引言
电力负荷作为电力系统运行的重要指标,其预测精度直接影响到电力系统安全稳定运行和经济效益。随着电力系统规模的不断扩大和结构的日益复杂,传统方法在处理复杂的非线性负荷数据方面显得力不从心。深度学习技术凭借其强大的非线性建模能力,近年来在负荷预测领域取得了显著进展。
时间卷积神经网络(TCN)作为一种新型深度学习模型,具有强大的时间序列建模能力,在负荷预测方面表现出色。TCN模型通过堆叠卷积层来提取时间序列特征,并利用因果卷积来保证模型的时序信息。然而,TCN模型的超参数优化对于模型性能至关重要,而传统的超参数优化方法往往依赖于人工经验,缺乏全局最优解。
为了解决TCN模型超参数优化问题,本文提出了一种基于布谷鸟优化算法(CS)的TCN模型优化方法。CS算法是一种新型的元启发式优化算法,具有全局寻优能力和较快的收敛速度。该方法利用CS算法自动搜索最优的TCN模型超参数,从而提高模型的预测精度。
2. 负荷预测模型
2.1 时间卷积神经网络(TCN)
TCN模型由多个因果卷积层组成,每个卷积层都使用因果卷积来提取时间序列特征。因果卷积是指当前时刻的输出只依赖于当前时刻及之前的输入,从而保证模型的时序信息。TCN模型的具体结构如下:
- 卷积层: 每个卷积层都使用因果卷积来提取时间序列特征。卷积核的大小和数量是TCN模型的重要超参数。
- 膨胀卷积: 膨胀卷积可以通过增加卷积核的感受野来捕获更长期的依赖关系。膨胀因子是TCN模型的另一个重要超参数。
- 残差连接: 残差连接可以解决深度神经网络中梯度消失问题,提高模型的训练效率。
- 批归一化: 批归一化可以加快模型的训练速度,提高模型的泛化能力。
2.2 布谷鸟优化算法(CS)
CS算法是一种基于鸟类巢寄生行为的元启发式优化算法。算法的基本思想是:
- 随机初始化种群: 算法开始时,随机生成一组候选解,即鸟巢的位置。
- 寄生行为: 每个鸟巢都代表一种可能的解。算法中,布谷鸟将蛋产在其他鸟巢中。
- 发现行为: 宿主鸟以一定的概率发现布谷鸟蛋,并将它丢弃。
- 更新种群: 算法根据每个鸟巢的适应度值来更新种群,并保留较好的解。
CS算法具有全局寻优能力和较快的收敛速度,适用于解决复杂的优化问题。
3. 基于CS优化的TCN模型
3.1 问题定义
本文的优化目标是寻找一组最优的TCN模型超参数,以提高模型的负荷预测精度。TCN模型的超参数包括:
- 卷积层数量
- 卷积核大小
- 膨胀因子
- 学习率
3.2 优化流程
基于CS优化TCN模型的负荷数据回归预测方法的优化流程如下:
- 初始化种群: 随机生成一组候选解,每个候选解代表一组TCN模型超参数。
- 评估适应度: 使用每个候选解对应的TCN模型训练负荷数据,并计算模型的预测误差作为适应度值。
- 寄生行为: 选择较差的候选解,并使用CS算法中的更新机制生成新的候选解。
- 发现行为: 以一定的概率发现新生成的候选解,并将其丢弃。
- 更新种群: 根据每个候选解的适应度值来更新种群,并保留较好的解。
- 重复步骤3-5: 直到满足停止条件,例如迭代次数达到上限或适应度值不再改善。
⛳️ 运行结果


🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类