【SCI顶级优化】Matlab实现被囊群优化算法TSA-CNN-LSTM-Multihead-Attention温度预测附matlab代码

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要

近年来,气温预测在各个领域都发挥着至关重要的作用。随着深度学习技术的快速发展,基于神经网络的温度预测方法取得了显著的进步。然而,现有方法在处理时间序列数据中的复杂模式和非线性关系方面仍存在局限性。为了克服这些挑战,本文提出了一种基于被囊群优化算法 (TSA) 的新型混合模型,即 TSA-CNN-LSTM-Multihead-Attention,用于高精度气温预测。该模型将卷积神经网络 (CNN) 用于提取时间序列数据的局部特征,长短期记忆网络 (LSTM) 用于捕捉长期依赖关系,多头注意力机制 (Multihead-Attention) 用于识别时间序列数据中的关键特征,并使用 TSA 优化模型参数。实验结果表明,与其他先进方法相比,所提模型在多个数据集上实现了更高的预测精度,展现出优异的性能。

1. 引言

气温是影响人类生活和社会经济发展的重要因素,准确预测气温对农业生产、能源管理、交通运输等领域具有重要意义。传统的气温预测方法主要依赖于统计模型和物理模型,但这些方法往往无法有效地捕捉时间序列数据中的复杂模式和非线性关系。

近年来,深度学习技术的快速发展为气温预测提供了新的方法和思路。基于神经网络的温度预测方法能够自动学习时间序列数据中的特征,并建立复杂的非线性模型,从而提高预测精度。然而,现有的基于神经网络的温度预测方法仍然存在一些问题:

  • 特征提取能力有限: 传统的深度神经网络,如循环神经网络 (RNN),难以有效地提取时间序列数据中的局部特征和全局特征。
  • 对长时依赖关系的捕捉能力不足: 传统的 RNN 模型在处理长时依赖关系时容易出现梯度消失或爆炸问题。
  • 模型参数的优化问题: 神经网络模型的参数众多,优化过程复杂,难以找到最优参数。

为了解决上述问题,本文提出了一种新型的混合模型,即 TSA-CNN-LSTM-Multihead-Attention,用于高精度气温预测。该模型结合了 CNN、LSTM 和 Multihead-Attention 的优势,并使用 TSA 优化模型参数。

2. 模型结构

所提模型的结构如图 1 所示。该模型由四个主要部分组成:

  • 卷积神经网络 (CNN): 用于提取时间序列数据的局部特征,并降低数据维度。
  • 长短期记忆网络 (LSTM): 用于捕捉时间序列数据的长期依赖关系,并生成隐藏状态序列。
  • 多头注意力机制 (Multihead-Attention): 用于识别时间序列数据中的关键特征,并对 LSTM 产生的隐藏状态进行加权。
  • 被囊群优化算法 (TSA): 用于优化模型参数,提高模型的预测精度。

2.1 卷积神经网络 (CNN)

CNN 是一种强大的特征提取器,能够有效地捕捉时间序列数据中的局部特征。在本模型中,CNN 用于提取时间序列数据的局部特征,并降低数据维度。CNN 的结构由多个卷积层、池化层和激活函数组成。卷积层使用卷积核对输入数据进行卷积操作,提取特征;池化层对卷积后的特征进行降采样,降低数据维度;激活函数则用于增强模型的非线性表达能力。

2.2 长短期记忆网络 (LSTM)

LSTM 是一种特殊的 RNN,能够有效地解决 RNN 模型在处理长时依赖关系时容易出现的梯度消失或爆炸问题。LSTM 通过引入门控机制,选择性地更新隐藏状态,从而避免了梯度消失或爆炸问题。在本模型中,LSTM 用于捕捉时间序列数据的长期依赖关系,并生成隐藏状态序列。

2.3 多头注意力机制 (Multihead-Attention)

Multihead-Attention 是一种强大的机制,能够识别时间序列数据中的关键特征,并对 LSTM 产生的隐藏状态进行加权。Multihead-Attention 使用多个注意力头,从不同的角度捕捉时间序列数据中的关键特征,并将这些特征进行融合。在本模型中,Multihead-Attention 用于识别时间序列数据中的关键特征,并提高模型的预测精度。

2.4 被囊群优化算法 (TSA)

TSA 是一种基于群体智能的优化算法,能够有效地搜索最优解。TSA 通过模拟被囊群的行为,在搜索空间中进行全局和局部搜索,最终找到最优解。在本模型中,TSA 用于优化模型参数,提高模型的预测精度。

结论

本文提出了一种基于 TSA 的新型混合模型 TSA-CNN-LSTM-Multihead-Attention,用于高精度气温预测。该模型结合了 CNN、LSTM 和 Multihead-Attention 的优势,并使用 TSA 优化模型参数。实验结果表明,所提模型在多个数据集上实现了更高的预测精度,展现出优异的性能。

未来展望

未来,我们将继续研究以下方向:

  • 将所提模型应用于其他气象要素的预测,例如降雨量、风速等。
  • 将所提模型与其他深度学习模型进行融合,进一步提高模型的预测精度。
  • 将所提模型应用于实际应用场景,例如农业生产、能源管理、交通运输等。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

  • 10
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ARIMA-LSTM预测模型是一种结合了自回归移动平均模型(ARIMA)和长短期记忆网络(LSTM)的时间序列预测模型。下面是一个简单的Python代码实现示例: ```python # 导入所需的库 import numpy as np import pandas as pd from statsmodels.tsa.arima.model import ARIMA from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 加载数据 data = pd.read_csv('data.csv') # 拆分训练集和测试集 train_data = data[:100] test_data = data[100:] # ARIMA模型训练和预测 arima_model = ARIMA(train_data, order=(1, 1, 1)) arima_model_fit = arima_model.fit() arima_predictions = arima_model_fit.predict(start=len(train_data), end=len(train_data)+len(test_data)-1) # LSTM模型训练和预测 train_data = np.array(train_data).reshape(-1, 1) test_data = np.array(test_data).reshape(-1, 1) model = Sequential() model.add(LSTM(50, activation='relu', input_shape=(1, 1))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') model.fit(train_data, train_data, epochs=50, batch_size=1, verbose=0) lstm_predictions = model.predict(test_data) lstm_predictions = lstm_predictions.reshape(-1) # 结合ARIMA和LSTM预测结果 combined_predictions = (arima_predictions + lstm_predictions) / 2 # 打印预测结果 print(combined_predictions) # 相关问题: # 1. 什么是ARIMA模型? # 2. 什么是LSTM模型? # 3. 如何将ARIMA和LSTM模型结合起来进行预测? ``` 请注意,这只是一个简单的示例,实际应用中可能需要根据具体情况进行参数调整和模型优化

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值