【路径规划】基于铰接式半挂车路径规划优化Matlab复现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

铰接式半挂车在道路运输中发挥着重要作用,其路径规划问题由于车辆的复杂结构和运动约束而变得更加复杂。本文以Matlab为工具,基于已有的路径规划算法,对铰接式半挂车的路径规划进行优化,并通过仿真验证其有效性。

1. 问题描述

铰接式半挂车的路径规划问题可以描述为:给定起点、终点和障碍物信息,求解一条满足车辆运动约束且避开障碍物的最优路径。其中,车辆的运动约束主要包括:

  • 转向约束: 牵引车和半挂车之间的铰接点存在转向角度限制。

  • 几何约束: 车辆的尺寸和形状限制了其可通过的空间。

  • 动力学约束: 车辆的动力学特性,例如速度和加速度,也影响着路径规划。

2. 算法选择与优化

本文采用人工势场法 (Artificial Potential Field) 对铰接式半挂车的路径规划进行优化。人工势场法是一种经典的路径规划方法,其基本思想是将目标点设置为吸引点,障碍物设置为斥力点,车辆在势场的作用下向目标点移动。

为了克服人工势场法易陷入局部最小值的问题,本文引入遗传算法 (Genetic Algorithm) 进行优化。遗传算法是一种全局优化算法,能够有效地搜索最优解。

3. Matlab实现

3.1 模型建立

在Matlab中,首先建立铰接式半挂车的模型。模型包含牵引车和半挂车的几何参数、运动约束和动力学参数。

3.2 环境构建

构建模拟环境,包括道路、障碍物和目标点。

3.3 势场函数设计

设计吸引势场和斥力势场函数,用于模拟车辆对目标点的吸引力和对障碍物的排斥力。

3.4 遗传算法实现

利用遗传算法对路径进行优化,设置染色体编码、适应度函数、交叉算子和变异算子等参数。

3.5 路径可视化

通过Matlab的绘图功能,将生成的路径可视化,并进行仿真验证。

4. 仿真结果与分析

通过Matlab仿真,验证了算法的有效性。在不同的环境下,算法能够成功找到避开障碍物的最优路径,并满足车辆的运动约束。

5. 结论

本文基于Matlab,利用人工势场法和遗传算法,对铰接式半挂车的路径规划进行了优化,并通过仿真验证了其有效性。该算法能够有效地解决铰接式半挂车路径规划问题,并为实际应用提供参考。

6. 未来展望

未来的研究方向包括:

  • 考虑更复杂的车辆模型和环境模型。

  • 研究更加高效的路径规划算法。

  • 将路径规划与车辆控制策略相结合,实现自动驾驶。

⛳️ 运行结果

🔗 参考文献

[1] 康翌婷.基于MATLAB的45吨铰接式自卸车差速器优化设计[J].  2009.

[2] 赵名卓.半挂汽车列车倒车安全与诱导控制研究[D].合肥工业大学,2021.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值