✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
铰接式半挂车在道路运输中发挥着重要作用,其路径规划问题由于车辆的复杂结构和运动约束而变得更加复杂。本文以Matlab为工具,基于已有的路径规划算法,对铰接式半挂车的路径规划进行优化,并通过仿真验证其有效性。
1. 问题描述
铰接式半挂车的路径规划问题可以描述为:给定起点、终点和障碍物信息,求解一条满足车辆运动约束且避开障碍物的最优路径。其中,车辆的运动约束主要包括:
-
转向约束: 牵引车和半挂车之间的铰接点存在转向角度限制。
-
几何约束: 车辆的尺寸和形状限制了其可通过的空间。
-
动力学约束: 车辆的动力学特性,例如速度和加速度,也影响着路径规划。
2. 算法选择与优化
本文采用人工势场法 (Artificial Potential Field) 对铰接式半挂车的路径规划进行优化。人工势场法是一种经典的路径规划方法,其基本思想是将目标点设置为吸引点,障碍物设置为斥力点,车辆在势场的作用下向目标点移动。
为了克服人工势场法易陷入局部最小值的问题,本文引入遗传算法 (Genetic Algorithm) 进行优化。遗传算法是一种全局优化算法,能够有效地搜索最优解。
3. Matlab实现
3.1 模型建立
在Matlab中,首先建立铰接式半挂车的模型。模型包含牵引车和半挂车的几何参数、运动约束和动力学参数。
3.2 环境构建
构建模拟环境,包括道路、障碍物和目标点。
3.3 势场函数设计
设计吸引势场和斥力势场函数,用于模拟车辆对目标点的吸引力和对障碍物的排斥力。
3.4 遗传算法实现
利用遗传算法对路径进行优化,设置染色体编码、适应度函数、交叉算子和变异算子等参数。
3.5 路径可视化
通过Matlab的绘图功能,将生成的路径可视化,并进行仿真验证。
4. 仿真结果与分析
通过Matlab仿真,验证了算法的有效性。在不同的环境下,算法能够成功找到避开障碍物的最优路径,并满足车辆的运动约束。
5. 结论
本文基于Matlab,利用人工势场法和遗传算法,对铰接式半挂车的路径规划进行了优化,并通过仿真验证了其有效性。该算法能够有效地解决铰接式半挂车路径规划问题,并为实际应用提供参考。
6. 未来展望
未来的研究方向包括:
-
考虑更复杂的车辆模型和环境模型。
-
研究更加高效的路径规划算法。
-
将路径规划与车辆控制策略相结合,实现自动驾驶。
⛳️ 运行结果
🔗 参考文献
[1] 康翌婷.基于MATLAB的45吨铰接式自卸车差速器优化设计[J]. 2009.
[2] 赵名卓.半挂汽车列车倒车安全与诱导控制研究[D].合肥工业大学,2021.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类