✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文研究了时变瑞利衰落信道下,双跳放大转发中差分M-PSK调制与非相干检测的误码率性能。针对“两符号”检测的情况,我们利用一阶时间序列模型来描述级联信道时变特性。基于该模型,推导出精确的误码率表达式,并通过仿真结果验证了其准确性。得到的表达式表明,误码率与级联信道的自相关系数密切相关,并且在高发射功率下存在不可消除的误码率下限。为了克服快速衰落带来的误码率下限,本文还开发了一种近似最优的“多符号”差分球形检测(MSDSD)方法。通过仿真结果,分析了不同衰落场景下MSDSD的误码率性能。
关键词: 双跳中继, 放大转发, 差分M-PSK调制, 非相干检测, 时变瑞利衰落, 误码率, 多符号差分球形检测
1. 引言
随着无线通信技术的快速发展,对高数据速率和可靠性的需求不断增长。为了满足这些需求,双跳中继系统因其能够提高覆盖范围、增强信道容量和延长网络寿命等优点而受到广泛关注。放大转发 (AF) 是一种常用的中继策略,它通过放大接收信号并转发到目的地来增强传输效率。
差分M-PSK (D-MPSK) 调制由于其在非理想信道条件下具有良好的性能以及无需精确的信道状态信息 (CSI) 的优点而被广泛应用于无线通信系统中。在非相干检测中,接收机不需要知道信道状态信息,从而简化了系统设计并降低了复杂度。然而,在时变信道下,非相干检测的误码率性能会受到信道时变的影响,尤其是在快速衰落场景下。
本文针对双跳AF中继系统中差分M-PSK调制与非相干检测的误码率性能进行了深入分析。为了描述级联信道时变特性,我们采用了一阶时间序列模型,并推导出精确的误码率表达式。仿真结果验证了该表达式的正确性。此外,为了克服快速衰落带来的误码率下限,本文提出了一种近似最优的MSDSD方法,并分析了其在不同衰落场景下的误码率性能。
4. 多符号差分球形检测
为了克服快速衰落带来的误码率下限,本文提出了MSDSD方法。该方法通过利用多个符号之间的相关性来提高检测性能。具体来说,MSDSD方法使用多个接收到的符号来估计最佳的相位差,并根据该估计值来解调信号。
仿真结果表明,MSDSD方法在不同衰落场景下均具有优异的误码率性能。与传统的“两符号”检测方法相比,MSDSD方法能够有效地降低误码率,尤其是在快速衰落场景下。
5. 结论
本文研究了双跳AF中继系统中差分M-PSK调制与非相干检测的误码率性能。针对“两符号”检测的情况,我们利用一阶时间序列模型推导出精确的误码率表达式。为了克服快速衰落带来的误码率下限,本文还提出了MSDSD方法,并通过仿真结果分析了其误码率性能。本文的研究结果表明,在时变瑞利衰落信道下,MSDSD方法能够有效提高双跳AF中继系统的误码率性能。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类