✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要:多输入单输出(MISO)预测问题在多个领域具有重要的应用价值,如金融、气象、电力等。针对传统预测模型在处理复杂非线性关系时存在不足,本文提出了一种基于天鹰优化算法(AO)优化的极限学习机(ELM)模型,即AO-DELM模型。AO算法是一种新颖的元启发式优化算法,具有较强的全局搜索能力和快速收敛性,能够有效地优化ELM模型的权重和偏置。通过对真实数据集的实验验证,结果表明AO-DELM模型在预测精度和鲁棒性方面均优于传统ELM模型和其它优化算法优化后的ELM模型。
关键词:多输入单输出预测;天鹰优化算法;极限学习机;Matlab实现
1. 绪论
多输入单输出(MISO)预测问题是指根据多个输入变量来预测单一输出变量。该问题广泛存在于各个领域,例如:
-
金融领域: 股票价格预测,根据股票历史价格、市场指数、经济指标等因素预测未来股票价格。
-
气象领域: 气温预测,根据气压、湿度、风速等因素预测未来气温。
-
电力领域: 电力负荷预测,根据历史电力负荷、气温、经济活动等因素预测未来电力负荷。
传统的预测模型,如线性回归、自回归模型等,在处理复杂非线性关系时存在不足。为了提高预测精度,近年来,一些新型预测模型被提出,例如神经网络、支持向量机和极限学习机(ELM)等。其中,ELM以其简单、高效的特点,在实际应用中得到了广泛关注。
ELM是一种单隐层前馈神经网络,它通过随机生成的隐层节点,并采用最小二乘法求解输出权重,从而避免了传统神经网络的繁琐训练过程。然而,ELM的预测精度受随机生成的隐层节点参数的影响,因此需要寻找合适的优化算法来优化ELM模型的参数。
2. 天鹰优化算法
天鹰优化算法(AO)是一种新颖的元启发式优化算法,其灵感来源于天鹰在捕猎时的行为。AO算法具有以下特点:
-
全局搜索能力强: AO算法通过随机初始化多个天鹰个体,并通过迭代更新个体的位置,可以有效地探索解空间。
-
快速收敛性: AO算法采用自适应调整步长策略,可以快速收敛到最优解。
-
参数少: AO算法仅包含几个参数,易于实现和调优。
3. AO-DELM模型
AO-DELM模型将AO算法与ELM模型结合,利用AO算法优化ELM模型的权重和偏置,以提高模型的预测精度。具体步骤如下:
-
初始化AO算法: 随机初始化多个天鹰个体,每个个体代表一组ELM模型的权重和偏置参数。
-
计算目标函数: 根据当前天鹰个体所对应的ELM模型参数,计算模型在训练集上的预测误差,并将其作为目标函数值。
-
更新天鹰个体: 根据AO算法的更新规则,调整每个天鹰个体的位置,即更新ELM模型的权重和偏置参数。
-
重复步骤2-3: 直到满足预设的停止条件,例如迭代次数或目标函数值达到阈值。
-
获得最优ELM模型: 最优天鹰个体所对应的ELM模型即为AO-DELM模型。
4. Matlab实现
以下代码展示了AO-DELM模型的Matlab实现:
% 加载数据集
data = load('data.mat');
X = data.X;
Y = data.Y;
% 划分训练集和测试集
train_ratio = 0.8;
[trainX, trainY, testX, testY] = split_data(X, Y, train_ratio);
% 初始化AO算法
num_hawks = 50;
max_iter = 100;
lb = [-1 -1]; % 权重和偏置的搜索范围下界
ub = [1 1]; % 权重和偏置的搜索范围上界
% 构建AO-DELM模型
model = ao_delm(trainX, trainY, num_hawks, max_iter, lb, ub);
% 模型预测
predictY = predict(model, testX);
% 评估模型性能
rmse = sqrt(mean((predictY - testY).^2));
mae = mean(abs(predictY - testY));
% 输出结果
fprintf('RMSE: %.4f\n', rmse);
fprintf('MAE: %.4f\n', mae);
5. 实验结果
本文对真实数据集进行了实验,并与传统ELM模型和其它优化算法优化后的ELM模型进行了对比。实验结果表明,AO-DELM模型在预测精度和鲁棒性方面均优于其他模型,体现了AO算法在优化ELM模型参数方面的有效性。
6. 结论
本文提出了一种基于天鹰优化算法的极限学习机模型,即AO-DELM模型。该模型有效地利用了AO算法的全局搜索能力和快速收敛性,优化了ELM模型的权重和偏置,从而提高了模型的预测精度。实验结果验证了AO-DELM模型在多输入单输出预测问题中的有效性。
7. 未来展望
未来,将进一步研究以下方向:
-
将AO算法与其他神经网络模型结合,探索新的预测模型。
-
研究AO算法参数的优化策略,提高模型的性能。
-
将AO-DELM模型应用于更多实际问题,验证其实用价值。
⛳️ 运行结果
🔗 参考文献
[1] 曹广喜,凌美君.基于状态识别RIME-DELM多变量时间序列预测的风速预测系统:202410323185[P][2024-08-18].
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类