【创新发文】基于天鹰优化算法AO-DELM的多输入单输出预测Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

摘要:多输入单输出(MISO)预测问题在多个领域具有重要的应用价值,如金融、气象、电力等。针对传统预测模型在处理复杂非线性关系时存在不足,本文提出了一种基于天鹰优化算法(AO)优化的极限学习机(ELM)模型,即AO-DELM模型。AO算法是一种新颖的元启发式优化算法,具有较强的全局搜索能力和快速收敛性,能够有效地优化ELM模型的权重和偏置。通过对真实数据集的实验验证,结果表明AO-DELM模型在预测精度和鲁棒性方面均优于传统ELM模型和其它优化算法优化后的ELM模型。

关键词:多输入单输出预测;天鹰优化算法;极限学习机;Matlab实现

1. 绪论

多输入单输出(MISO)预测问题是指根据多个输入变量来预测单一输出变量。该问题广泛存在于各个领域,例如:

  • 金融领域: 股票价格预测,根据股票历史价格、市场指数、经济指标等因素预测未来股票价格。

  • 气象领域: 气温预测,根据气压、湿度、风速等因素预测未来气温。

  • 电力领域: 电力负荷预测,根据历史电力负荷、气温、经济活动等因素预测未来电力负荷。

传统的预测模型,如线性回归、自回归模型等,在处理复杂非线性关系时存在不足。为了提高预测精度,近年来,一些新型预测模型被提出,例如神经网络、支持向量机和极限学习机(ELM)等。其中,ELM以其简单、高效的特点,在实际应用中得到了广泛关注。

ELM是一种单隐层前馈神经网络,它通过随机生成的隐层节点,并采用最小二乘法求解输出权重,从而避免了传统神经网络的繁琐训练过程。然而,ELM的预测精度受随机生成的隐层节点参数的影响,因此需要寻找合适的优化算法来优化ELM模型的参数。

2. 天鹰优化算法

天鹰优化算法(AO)是一种新颖的元启发式优化算法,其灵感来源于天鹰在捕猎时的行为。AO算法具有以下特点:

  • 全局搜索能力强: AO算法通过随机初始化多个天鹰个体,并通过迭代更新个体的位置,可以有效地探索解空间。

  • 快速收敛性: AO算法采用自适应调整步长策略,可以快速收敛到最优解。

  • 参数少: AO算法仅包含几个参数,易于实现和调优。

3. AO-DELM模型

AO-DELM模型将AO算法与ELM模型结合,利用AO算法优化ELM模型的权重和偏置,以提高模型的预测精度。具体步骤如下:

  1. 初始化AO算法: 随机初始化多个天鹰个体,每个个体代表一组ELM模型的权重和偏置参数。

  2. 计算目标函数: 根据当前天鹰个体所对应的ELM模型参数,计算模型在训练集上的预测误差,并将其作为目标函数值。

  3. 更新天鹰个体: 根据AO算法的更新规则,调整每个天鹰个体的位置,即更新ELM模型的权重和偏置参数。

  4. 重复步骤2-3: 直到满足预设的停止条件,例如迭代次数或目标函数值达到阈值。

  5. 获得最优ELM模型: 最优天鹰个体所对应的ELM模型即为AO-DELM模型。

4. Matlab实现

以下代码展示了AO-DELM模型的Matlab实现:

 

% 加载数据集
data = load('data.mat');
X = data.X;
Y = data.Y;

% 划分训练集和测试集
train_ratio = 0.8;
[trainX, trainY, testX, testY] = split_data(X, Y, train_ratio);

% 初始化AO算法
num_hawks = 50;
max_iter = 100;
lb = [-1 -1]; % 权重和偏置的搜索范围下界
ub = [1 1]; % 权重和偏置的搜索范围上界

% 构建AO-DELM模型
model = ao_delm(trainX, trainY, num_hawks, max_iter, lb, ub);

% 模型预测
predictY = predict(model, testX);

% 评估模型性能
rmse = sqrt(mean((predictY - testY).^2));
mae = mean(abs(predictY - testY));

% 输出结果
fprintf('RMSE: %.4f\n', rmse);
fprintf('MAE: %.4f\n', mae);

5. 实验结果

本文对真实数据集进行了实验,并与传统ELM模型和其它优化算法优化后的ELM模型进行了对比。实验结果表明,AO-DELM模型在预测精度和鲁棒性方面均优于其他模型,体现了AO算法在优化ELM模型参数方面的有效性。

6. 结论

本文提出了一种基于天鹰优化算法的极限学习机模型,即AO-DELM模型。该模型有效地利用了AO算法的全局搜索能力和快速收敛性,优化了ELM模型的权重和偏置,从而提高了模型的预测精度。实验结果验证了AO-DELM模型在多输入单输出预测问题中的有效性。

7. 未来展望

未来,将进一步研究以下方向:

  • 将AO算法与其他神经网络模型结合,探索新的预测模型。

  • 研究AO算法参数的优化策略,提高模型的性能。

  • 将AO-DELM模型应用于更多实际问题,验证其实用价值。

⛳️ 运行结果

🔗 参考文献

[1] 曹广喜,凌美君.基于状态识别RIME-DELM多变量时间序列预测的风速预测系统:202410323185[P][2024-08-18].

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值