【故障诊断】基于人工蜂鸟优化算法AHA优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

轴承作为机械设备的核心部件,其运行状态直接影响着设备的正常运行。随着工业自动化程度的不断提高,对轴承故障诊断的需求也日益增长。传统的故障诊断方法往往依赖于专家经验,存在效率低、诊断精度低等问题。近年来,深度学习技术在轴承故障诊断领域取得了显著进展。本文提出了一种基于人工蜂鸟优化算法 (Artificial Hummingbird Algorithm,AHA) 优化双向时间卷积神经网络 (Bidirectional Temporal Convolutional Network, BiTCN) 的轴承数据故障诊断方法。该方法利用AHA算法对BiTCN模型的超参数进行优化,以提高模型的诊断精度。通过对实际轴承数据进行实验验证,结果表明该方法在不同故障类型和不同故障程度下均能取得较好的诊断效果,优于传统的故障诊断方法和一些现有的深度学习方法。

关键词: 轴承故障诊断; 人工蜂鸟优化算法; 双向时间卷积神经网络; 深度学习

1. 概述

轴承作为机械设备中不可或缺的部件,其运行状态直接影响着设备的正常运作。当轴承发生故障时,会导致设备性能下降、效率降低,甚至引发安全事故。因此,及时准确地诊断轴承故障对保障设备安全运行至关重要。

传统的轴承故障诊断方法主要依赖于专家经验,通过对设备运行数据进行分析,判断轴承是否发生故障。然而,这种方法存在以下不足:

  • 依赖专家经验,诊断效率低: 经验丰富的专家才能准确诊断故障,而对于一些新出现的故障类型,传统的诊断方法往往束手无策。

  • 诊断精度低: 由于人为因素的影响,传统的诊断方法往往存在一定的误判率。

近年来,深度学习技术在各个领域都取得了突破性的进展,并在轴承故障诊断领域展现出巨大的潜力。深度学习方法可以从大量数据中自动学习特征,并建立更复杂的模型,从而实现更高精度的故障诊断。

2. 相关工作

近年来,许多研究人员将深度学习方法应用于轴承故障诊断,并取得了一定的成果。例如:

  • 卷积神经网络 (CNN): CNN擅长提取空间特征,可以有效地识别轴承故障的特征。一些研究将CNN应用于轴承振动信号的特征提取,并取得了良好的诊断效果。

  • 循环神经网络 (RNN): RNN擅长处理时间序列数据,可以有效地学习时间特征。一些研究将RNN应用于轴承振动信号的时间序列分析,并取得了较好的诊断效果。

  • 长短期记忆网络 (LSTM): LSTM是RNN的一种改进版本,可以有效地解决RNN存在的梯度消失问题。一些研究将LSTM应用于轴承振动信号的预测,并取得了较好的诊断效果。

然而,现有的深度学习方法也存在一些问题:

  • 模型超参数难以优化: 深度学习模型往往包含大量的超参数,这些超参数的设置直接影响着模型的性能。目前,超参数优化方法大多依赖于经验和试错,效率较低。

  • 模型复杂度高: 深度学习模型的训练需要大量的数据和计算资源,这限制了其在实际应用中的推广。

3. 基于AHA优化BiTCN的轴承故障诊断方法

为了解决上述问题,本文提出了一种基于人工蜂鸟优化算法 (AHA) 优化双向时间卷积神经网络 (BiTCN) 的轴承数据故障诊断方法。该方法利用AHA算法对BiTCN模型的超参数进行优化,以提高模型的诊断精度。

3.1 人工蜂鸟优化算法 (AHA)

AHA是一种新型的群体智能优化算法,模拟了蜂鸟的觅食行为。AHA算法具有以下优点:

  • 全局搜索能力强: AHA算法可以有效地探索整个搜索空间,找到最优解。

  • 收敛速度快: AHA算法可以快速地收敛到最优解,提高优化效率。

  • 易于实现: AHA算法结构简单,易于实现。

3.2 双向时间卷积神经网络 (BiTCN)

BiTCN是一种结合了卷积神经网络和循环神经网络优点的网络结构,可以有效地提取时间序列数据的空间特征和时间特征。BiTCN包含两个方向的卷积层,分别提取时间序列数据的正向特征和反向特征,并将这两个方向的特征进行融合,从而得到更完整的特征表示。

3.3 算法流程

本文提出的基于AHA优化BiTCN的轴承故障诊断方法的算法流程如下:

  1. 数据预处理: 对收集到的轴承振动信号进行预处理,包括数据清洗、数据归一化等。

  2. 特征提取: 使用BiTCN网络提取轴承振动信号的特征。

  3. 超参数优化: 使用AHA算法对BiTCN网络的超参数进行优化,例如卷积核大小、网络层数等。

  4. 模型训练: 使用优化后的BiTCN网络对轴承数据进行训练,得到模型参数。

  5. 故障诊断: 使用训练好的BiTCN模型对新的轴承数据进行诊断,判断轴承是否发生故障,并识别故障类型。

4. 实验结果与分析

为了验证本文提出的方法的有效性,我们在公开的轴承数据集上进行了实验。实验结果表明,本文提出的方法在不同故障类型和不同故障程度下均能取得较好的诊断效果,优于传统的故障诊断方法和一些现有的深度学习方法。

4.1 数据集

实验使用的是来自Case Western Reserve University (CWRU) 的轴承数据集。该数据集包含了不同故障类型和不同故障程度的轴承振动信号。

4.2 实验结果

实验结果表明,本文提出的方法在不同故障类型和不同故障程度下均能取得较好的诊断效果,优于传统的故障诊断方法和一些现有的深度学习方法。

4.3 分析

实验结果表明,AHA算法可以有效地优化BiTCN模型的超参数,提高模型的诊断精度。BiTCN网络可以有效地提取轴承振动信号的特征,从而实现更高的诊断准确率。

5. 结论

本文提出了一种基于人工蜂鸟优化算法 (AHA) 优化双向时间卷积神经网络 (BiTCN) 的轴承数据故障诊断方法。该方法利用AHA算法对BiTCN模型的超参数进行优化,以提高模型的诊断精度。通过对实际轴承数据进行实验验证,结果表明该方法在不同故障类型和不同故障程度下均能取得较好的诊断效果,优于传统的故障诊断方法和一些现有的深度学习方法。

6. 未来展望

未来,可以进一步研究以下方向:

  • 提升模型的鲁棒性: 研究如何提高模型对噪声数据的鲁棒性,提高模型在实际应用中的稳定性。

  • 探索新的深度学习模型: 研究如何将其他深度学习模型应用于轴承故障诊断,例如生成对抗网络 (GAN)。

  • 研究更多的数据增强方法: 研究如何使用数据增强方法增加训练数据,提高模型的泛化能力。

  • ​📣 部分代码

%%  数据分析num_size = 0.7;                              % 训练集占数据集比例 outdim = 1;                                  % 最后一列为输出num_class = length(unique(res(:,end)));  % 计算类别数 num_samples = size(res, 1);                  % 样本个数kim = size(res, 2)-1;                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

⛳️ 运行结果

🔗 参考文献

[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.

[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.

[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.

[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.

[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值