✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
轴承作为机械设备的核心部件,其故障会导致设备的停机和生产效率的下降,因此准确及时地进行轴承故障诊断至关重要。近年来,深度学习技术在故障诊断领域取得了显著进展,其中双向时间卷积神经网络 (BiTCN) 凭借其能够提取时间序列数据中的双向特征的能力,成为一种有效的故障诊断方法。然而,传统的 BiTCN 模型通常存在参数量大、训练效率低等问题。为了解决这些问题,本文提出了一种基于三角测量拓扑聚合优化器 (TTAO) 优化 BiTCN 模型的轴承故障诊断方法。该方法利用 TTAO 对 BiTCN 模型进行结构优化,有效地减少了模型的参数量,提升了模型的训练效率,同时提高了模型的预测精度。实验结果表明,该方法能够有效地识别轴承的不同故障类型,并优于传统的 BiTCN 模型。
关键词:轴承故障诊断,双向时间卷积神经网络,三角测量拓扑聚合优化器,故障类型识别
1. 引言
轴承作为机械设备的关键部件,其运行状态直接影响着设备的正常运转。一旦轴承发生故障,会导致设备停机,维修成本高昂,甚至造成安全事故。因此,及时准确地对轴承进行故障诊断,对于保障设备安全运行和提高生产效率至关重要。
传统的轴承故障诊断方法主要依靠人工经验,受主观因素影响较大,且难以应对复杂的故障类型。近年来,随着深度学习技术的快速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点。其中,卷积神经网络 (CNN) 由于其强大的特征提取能力,在故障诊断领域得到了广泛应用。
双向时间卷积神经网络 (BiTCN) 是 CNN 的一种变体,其能够提取时间序列数据中的双向特征,在处理时间序列数据方面具有优势。然而,传统的 BiTCN 模型通常存在参数量大、训练效率低等问题,这限制了其在实际应用中的推广。
为了解决以上问题,本文提出了一种基于三角测量拓扑聚合优化器 (TTAO) 优化 BiTCN 模型的轴承故障诊断方法。TTAO 是一种基于三角测量原理的网络结构优化算法,能够有效地减少模型的参数量,提升模型的训练效率。该方法将 TTAO 应用于 BiTCN 模型,通过对网络结构进行优化,降低了模型复杂度,提高了模型的预测精度。
2. 相关工作
近年来,深度学习技术在轴承故障诊断领域取得了显著进展,研究者们提出了多种基于深度学习的故障诊断方法。
-
卷积神经网络 (CNN):文献 [1] 利用 CNN 对轴承振动信号进行特征提取,并结合支持向量机 (SVM) 进行故障分类,取得了较好的诊断效果。
-
循环神经网络 (RNN):文献 [2] 使用 RNN 对轴承振动信号进行建模,并利用其时间依赖性来识别故障类型。
-
双向时间卷积神经网络 (BiTCN):文献 [3] 提出了一种基于 BiTCN 的轴承故障诊断方法,利用 BiTCN 提取振动信号中的双向特征,提高了诊断精度。
然而,上述方法大多存在参数量大、训练效率低等问题,限制了其在实际应用中的推广。
3. 算法原理
3.1 双向时间卷积神经网络 (BiTCN)
BiTCN 是一种能够提取时间序列数据中的双向特征的深度学习模型。其结构通常由多个双向卷积层、池化层和全连接层组成。双向卷积层分别对时间序列数据进行向前和向后卷积,提取不同方向的特征信息。池化层用于对特征图进行降维,减小模型的计算量。全连接层用于对提取到的特征进行分类。
3.2 三角测量拓扑聚合优化器 (TTAO)
TTAO 是一种基于三角测量原理的网络结构优化算法。其主要思想是通过对网络结构进行三角测量,找到最优的连接方式,从而减少模型的参数量,提升模型的训练效率。TTAO 的主要步骤如下:
-
构建三角测量网络: 将网络中的每个节点视为一个顶点,连接两个节点的边表示它们之间的连接关系。
-
计算三角测量距离: 利用三角测量原理,计算网络中任意两个节点之间的距离,并根据距离对节点进行排序。
-
聚合节点: 根据距离排序结果,将距离较近的节点进行聚合,形成新的节点。
-
更新网络结构: 更新网络结构,将聚合后的节点作为新的节点,并重新计算连接关系。
4. 模型设计
本文提出的基于 TTAO 优化 BiTCN 模型的轴承故障诊断方法,其模型结构如图 1 所示。
图 1. 基于 TTAO 优化 BiTCN 模型的结构示意图
该模型主要由以下部分组成:
-
数据预处理: 对采集到的轴承振动信号进行预处理,包括数据清洗、数据归一化等操作。
-
BiTCN 网络: 利用 TTAO 对 BiTCN 网络进行结构优化,减少模型参数量,提高训练效率。
-
分类器: 使用 Softmax 函数进行故障分类,输出不同故障类型的概率。
5. 实验结果
为了验证该方法的有效性,本文在公开的轴承故障数据集上进行了实验。实验结果表明,该方法能够有效地识别轴承的不同故障类型,并优于传统的 BiTCN 模型。
6. 结论
本文提出了一种基于三角测量拓扑聚合优化器 (TTAO) 优化 BiTCN 模型的轴承故障诊断方法。该方法利用 TTAO 对 BiTCN 模型进行结构优化,有效地减少了模型的参数量,提升了模型的训练效率,同时提高了模型的预测精度。实验结果表明,该方法能够有效地识别轴承的不同故障类型,并优于传统的 BiTCN 模型。
7. 未来工作
未来工作将继续研究以下方面:
-
将该方法应用于其他机械设备的故障诊断。
-
研究更有效的网络结构优化算法,进一步提高模型的性能。
-
将该方法与其他深度学习模型结合,构建更复杂的故障诊断系统。
附录:Matlab 代码
% 数据预处理
data = load('bearing_data.mat');
data = data.data;
% 数据归一化
data = normalize(data);
% 数据分割
train_data = data(1:8000, :);
test_data = data(8001:end, :);
% 标签
train_label = ones(size(train_data, 1), 1);
test_label = ones(size(test_data, 1), 1);
% BiTCN 模型
net = BiTCN();
% TTAO 优化器
optimizer = TTAO(net);
% 训练模型
net = optimizer.train(train_data, train_label);
% 测试模型
[predicted_label, accuracy] = net.predict(test_data, test_label);
% 输出结果
disp(['准确率:', num2str(accuracy)]
📣 部分代码
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_class = length(unique(res(:,end))); % 计算类别数
num_samples = size(res, 1); % 样本个数
kim = size(res, 2)-1; % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
⛳️ 运行结果
🔗 参考文献
[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.
[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.
[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.
[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.
[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类