✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文旨在探讨一款用于计算液体双组元推进剂发动机推力器设计参数的软件开发。该软件基于初始设计输入,包括:
-
设计燃烧室压力
-
设计推力水平
-
推进剂密度、摩尔质量、热力学传输性质
软件输出包含发动机喷嘴和燃烧室轮廓,可直接导入SolidWorks、Onshape或其他任何CAD软件进行初始线框模型的创建。
软件还包含基于Gneliski关联(用于碳基燃料)和McCarthy-Wolf关联(用于氢氧系统)的再生冷却通道尺寸确定方法。
未来开发将扩展至以下方面:
-
涵盖更多喷嘴几何结构,包括单旋流、同轴式和针形喷嘴
-
整合共轭传热模型
-
支持更广泛的材料,包括AlSi10Mg和GrCop-42
-
引入涡轮机械建模
1. 软件功能概述
该软件旨在为液体双组元推进剂发动机推力器设计提供高效便捷的工具。其核心功能包括:
-
参数计算: 根据用户输入的设计参数,计算推力器喷嘴和燃烧室尺寸、燃烧室压力、推力水平等关键参数。
-
几何设计: 生成推力器喷嘴和燃烧室的二维轮廓,方便用户导入CAD软件进行三维建模。
-
冷却通道设计: 根据所选推进剂和材料,计算再生冷却通道尺寸,确保燃烧室壁面温度在安全范围内。
-
性能评估: 基于已计算的几何参数和性能参数,评估推力器性能,如推力、比冲、燃烧效率等。
2. 核心技术与算法
软件采用以下核心技术和算法:
-
气体动力学: 基于一维气体动力学方程,计算喷嘴流场,确定喷嘴尺寸和性能。
-
热力学: 采用热力学模型,计算推进剂燃烧产物性质,如温度、压力、比热容等,用于气体动力学计算。
-
传热: 基于热传递理论,计算燃烧室壁面热负荷,并结合冷却通道设计算法,确定冷却通道尺寸和流量。
-
材料性质: 根据用户选择的材料,提取材料热物理性质,用于传热计算。
3. 未来发展方向
为了进一步完善该软件,未来我们将重点关注以下几个方向:
-
扩展喷嘴几何结构: 增加更多喷嘴类型,例如双旋流喷嘴、扩散喷嘴等,提高设计灵活性。
-
引入共轭传热模型: 将传热计算扩展至燃烧室壁面和冷却剂之间的热传递过程,更加精确地模拟热负荷和冷却效果。
-
支持更广泛材料: 增加支持的材料库,包括高强度合金、高温陶瓷等,满足更广泛的设计需求。
-
涡轮机械建模: 集成涡轮机械设计模块,用于设计推进剂泵或涡轮增压器,实现更加完整的推进系统设计。
4. 总结
该软件的开发旨在为液体双组元推进剂发动机推力器设计提供高效、便捷的工具,并不断进行完善,以满足未来推进系统设计发展的需求。软件的成功开发将有助于推进我国航空航天领域的发展,推动新型推进技术的进步。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类