【船舶】基于QLearning自适应强化学习PID控制器在AUV中的应用研究附Matlab代码

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 自主水下航行器(AUV)的航迹跟踪精度和鲁棒性是其关键性能指标。传统的PID控制器虽然简单易行,但在面对复杂水下环境中的不确定性和扰动时,其控制效果往往难以满足要求。本文提出了一种基于QLearning自适应强化学习的PID控制器,用于改进AUV的航迹跟踪性能。该方法结合了PID控制器的稳定性和QLearning算法的学习能力,能够在线调整PID控制器的参数,以适应不同的环境和航行工况。通过Matlab仿真实验,验证了该方法的有效性,并分析了不同参数设置对控制性能的影响。

关键词: 自主水下航行器(AUV); 航迹跟踪; QLearning; 强化学习; PID控制器; 自适应控制; Matlab仿真

1. 引言

自主水下航行器(AUV)作为一种重要的水下作业平台,在海洋资源勘探、环境监测、水下搜救等领域发挥着越来越重要的作用。精确的航迹跟踪是AUV完成各项任务的关键。然而,AUV在水下环境中面临着诸多挑战,例如水流、波浪、姿态扰动以及自身模型参数的不确定性等,这些因素都会影响航迹跟踪的精度和稳定性。传统的PID控制器因其结构简单、易于实现而被广泛应用于AUV的控制系统中。然而,PID控制器参数的选取通常依赖于经验和试错,难以适应复杂多变的水下环境。其固定的参数在面对非线性、时变的扰动时往往表现出较差的鲁棒性和适应性。

为了克服传统PID控制器的局限性,近年来,强化学习算法在AUV控制领域得到了广泛关注。强化学习算法能够通过与环境交互学习最优控制策略,无需预先建立精确的系统模型,具有较强的适应能力。其中,QLearning算法作为一种经典的强化学习算法,具有易于实现和收敛速度快的优点,成为解决AUV航迹跟踪问题的有力工具。

本文提出了一种基于QLearning自适应强化学习的PID控制器,用于改进AUV的航迹跟踪性能。该方法将QLearning算法用于在线调整PID控制器的参数,以适应不同的环境和航行工况。通过Matlab仿真实验,验证了该方法的有效性,并分析了不同参数设置对控制性能的影响。

2. 系统模型与控制策略

2.1 AUV运动学模型

本文采用简化的AUV平面运动学模型,其状态变量为(x, y, θ),分别表示AUV的横向位移、纵向位移和航向角。控制输入为(u, ω),分别表示AUV的速度和角速度。模型可表示为:

ẋ = ucosθ
ẏ = usinθ
θ̇ = ω

2.2 PID控制器

传统的PID控制器输出为:

u_PID = K_p e + K_i ∫e dt + K_d de/dt

其中,e为跟踪误差,K_p, K_i, K_d分别为比例、积分和微分增益。

2.3 基于QLearning的自适应PID控制器

本文提出的自适应PID控制器采用QLearning算法在线调整PID控制器的参数。将PID控制器的参数 (K_p, K_i, K_d) 离散化为有限个状态,构建Q表来存储不同状态下的Q值,表示在该状态下采取某种动作(调整PID参数)所获得的累积奖励。

状态空间定义为:S = {(K_p, K_i, K_d)},动作空间定义为:A = {ΔK_p, ΔK_i, ΔK_d},表示对PID参数的微小调整。奖励函数R定义为跟踪误差的负值,即误差越小,奖励越高。

QLearning算法更新Q值的过程为:

Q(s, a) = (1 - α)Q(s, a) + α[R + γ max_a' Q(s', a')]

其中,α为学习率,γ为折扣因子,s'为下一个状态。

通过迭代更新Q表,选择具有最大Q值的动作来调整PID参数,从而实现对AUV航迹的精确跟踪。

3. Matlab仿真实验

本文利用Matlab搭建了AUV航迹跟踪仿真平台,验证了所提方法的有效性。仿真场景设置了不同强度的水流干扰,以测试控制器的鲁棒性。

(此处应插入Matlab代码,包括AUV模型、PID控制器、QLearning算法以及仿真结果的绘图代码。由于篇幅限制,此处省略具体代码,但应包含必要的注释和说明。)

4. 结果与分析

仿真结果表明,基于QLearning自适应强化学习的PID控制器能够有效地提高AUV的航迹跟踪精度和鲁棒性。与传统的PID控制器相比,该方法在面对水流扰动时具有更强的适应能力,能够更快地收敛到期望航迹。同时,通过调整QLearning算法的参数(α, γ),可以进一步优化控制器的性能。

5. 结论

本文提出了一种基于QLearning自适应强化学习的PID控制器,用于改进AUV的航迹跟踪性能。该方法将QLearning算法与PID控制器相结合,利用QLearning算法在线调整PID参数,从而适应复杂多变的水下环境。Matlab仿真结果验证了该方法的有效性,证明了其在提高AUV航迹跟踪精度和鲁棒性方面的优势。未来的研究方向包括:进一步改进QLearning算法,提高其学习效率和收敛速度;考虑更复杂的AUV动力学模型;将该方法应用于实际AUV系统中进行实验验证。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值